一般实际应用中,会通过Flume+Kafka来对产生的数据进行采集,也可以在Kafka中对数据进行一个初步的处理,用于后续Spark或MapReduce的使用,
这个案例主要是实现Flume和Kafka的对接,
# define
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F -c +0 /opt/module/datas/flume.log
a1.sources.r1.shell = /bin/bash -c
# sink
a1.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
a1.sinks.k1.kafka.bootstrap.servers = hadoop102:9092,hadoop103:9092,hadoop104:9092
a1.sinks.k1.kafka.topic = first
a1.sinks.k1.kafka.flumeBatchSize = 20
a1.sinks.k1.kafka.producer.acks = 1
a1.sinks.k1.kafka.producer.linger.ms = 1
# channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# bind
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
...
bin/flume-ng agent -c conf/ -n a1 -f jobs/flume-kafka.conf
echo hello >> /opt/module/datas/flume.log
内容来源于网络,如有侵权,请联系作者删除!