本文整理了Java中edu.illinois.cs.cogcomp.lbjava.classify.Feature
类的一些代码示例,展示了Feature
类的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Feature
类的具体详情如下:
包路径:edu.illinois.cs.cogcomp.lbjava.classify.Feature
类名称:Feature
[英]Objects of this class represent the value of a Classifier
's decision.
[中]此类的对象表示Classifier
决策的值。
代码示例来源:origin: CogComp/cogcomp-nlp
public String discreteValue(Object __example) {
if (!(__example instanceof Token)) {
String type = __example == null ? "null" : __example.getClass().getName();
System.err
.println("Classifier 'labelOneAfter(Token)' defined on line 108 of POSKnown.lbj received '"
+ type + "' as input.");
new Exception().printStackTrace();
System.exit(1);
}
return cachedFeatureValue(__example).getStringValue();
}
代码示例来源:origin: CogComp/cogcomp-nlp
public Feature featureValue(Object __example) {
if (!(__example instanceof Token)) {
String type = __example == null ? "null" : __example.getClass().getName();
System.err
.println("Classifier 'L1bL1a(Token)' defined on line 139 of POSKnown.lbj received '"
+ type + "' as input.");
new Exception().printStackTrace();
System.exit(1);
}
Feature __result;
__result = left.featureValue(__example).conjunction(right.featureValue(__example), this);
return __result;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
/**
* Two conjunctions are equivalent when their arguments are equivalent.
*
* @return <code>true</code> iff the argument is an equivalent <code>Feature</code>.
**/
public boolean equals(Object o) {
if (!super.equals(o))
return false;
RealConjunctiveFeature c = (RealConjunctiveFeature) o;
return (left == c.left || left.equals(c.left))
&& (right == c.right || right.equals(c.right));
}
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
/**
* A helper method for {@link #getFeatureKey(Lexicon,boolean,int)}, this method computes the
* feature keys corresponding to the arguments of the conjunction. Here, we lookup the arguments
* to the conjunction in the lexicon so that their counts are never less than the conjunction's,
* and we return the actual feature object that's already a key in the lexicon.
*
* @param f The argument feature for which a key will be computed.
* @param lexicon The lexicon into which this feature will be indexed.
* @param training Whether or not the learner is currently training.
* @param label The label of the example containing this feature, or -1 if we aren't doing per
* class feature counting.
* @return A feature object appropriate for use as the key of a map.
**/
protected Feature getArgumentKey(Feature f, Lexicon lexicon, boolean training, int label) {
if (f.isDiscrete()) {
if (!training)
return f;
if (!f.isPrimitive())
f = f.getFeatureKey(lexicon, true, label);
} else {
f = f.getFeatureKey(lexicon, training, label);
if (!training)
return f;
}
return lexicon.getChildFeature(f, label);
}
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
/**
* A helper method for {@link #getFeatureKey(Lexicon,boolean,int)}, this method computes the
* feature keys corresponding to the arguments of the conjunction. Here, we lookup the arguments
* to the conjunction in the lexicon so that their counts are never less than the conjunction's,
* and we return the actual feature object that's already a key in the lexicon.
*
* @param f The argument feature for which a key will be computed.
* @param lexicon The lexicon into which this feature will be indexed.
* @param label The label of the example containing this feature, or -1 if we aren't doing per
* class feature counting.
* @return A feature object appropriate for use as the key of a map.
**/
protected DiscreteFeature getArgumentKey(Feature f, Lexicon lexicon, int label) {
if (!f.isPrimitive())
f = f.getFeatureKey(lexicon, true, label);
return (DiscreteFeature) lexicon.getChildFeature(f, label);
}
代码示例来源:origin: edu.illinois.cs.cogcomp/saul
if (!(att.name().equals(f.toString()))) {
System.err.println("WekaWrapper: Error - makeInstance encountered a misaligned "
+ "attribute-feature pair.");
System.err.println(" " + att.name() + " and " + f.toString()
+ " should have been identical.");
new Exception().printStackTrace();
System.exit(1);
if (f.isDiscrete())
inst.setValue(attIndex, "1"); // this feature is used in this example so we set it to "1"
else
if (!(label.getGeneratingClassifier().equals(((Attribute) attributeInfo.elementAt(0))
.name()))) {
System.err.println("WekaWrapper: Error - makeInstance found the wrong label name.");
if (!label.isDiscrete())
inst.setValue(0, instance.labelValues[0]);
else
inst.setValue(0, label.getStringValue());
代码示例来源:origin: CogComp/cogcomp-nlp
public FeatureVector classify(Object __example)
{
if (!(__example instanceof Relation))
{
String type = __example == null ? "null" : __example.getClass().getName();
System.err.println("Classifier 'combinedFeatures$$0(Relation)' defined on line 237 of extent.lbj received '" + type + "' as input.");
new Exception().printStackTrace();
System.exit(1);
}
FeatureVector __result;
__result = new FeatureVector();
FeatureVector leftVector = left.classify(__example);
int N = leftVector.featuresSize();
FeatureVector rightVector = right.classify(__example);
int M = rightVector.featuresSize();
for (int i = 0; i < N; ++i)
{
Feature lf = leftVector.getFeature(i);
for (int j = 0; j < M; ++j)
{
Feature rf = rightVector.getFeature(j);
if (lf.equals(rf)) continue;
__result.addFeature(lf.conjunction(rf, this));
}
}
__result.sort();
return __result;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
/** Returns a text representation of this lexicon (for debugging). */
public String toString() {
StringBuffer result = new StringBuffer();
for (int i = 0; i < lexiconInv.size(); ++i) {
result.append(", ");
result.append(i);
result.append(": ");
result.append(lexiconInv.get(i).toString());
}
if (lexiconInv.size() > 0)
return result.substring(2);
return result.toString();
}
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
Feature f = inverse.get(indexes[i]);
previousClassName =
f.lexWrite(out, this, previousClassName, previousPackage, previousClassifier,
previousSIdentifier, previousBSIdentifier);
previousPackage = f.getPackage();
previousClassifier = f.getGeneratingClassifier();
if (f.hasStringIdentifier())
previousSIdentifier = f.getStringIdentifier();
else if (f.hasByteStringIdentifier())
previousBSIdentifier = f.getByteStringIdentifier();
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
for (int i = 0; i < N; ++i) {
Feature f =
Feature.lexReadFeature(in, this, previousClass, previousPackage,
previousClassifier, previousSIdentifier, previousBSIdentifier);
int index = in.readInt();
lexiconInv.set(index, f);
previousClass = f.getClass();
previousPackage = f.getPackage();
previousClassifier = f.getGeneratingClassifier();
if (f.hasStringIdentifier())
previousSIdentifier = f.getStringIdentifier();
else if (f.hasByteStringIdentifier())
previousBSIdentifier = f.getByteStringIdentifier();
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
/**
* Take the dot product of two feature vectors.
*
* @param vector The feature vector to take the dot product with.
* @return The dot product of this feature vector and <code>vector</code>.
**/
public double dot(FeatureVector vector) {
if (features.size() == 0 || vector.features.size() == 0)
return 0;
FVector v1 = (FVector) features.clone();
FVector v2 = (FVector) vector.features.clone();
v1.sort();
v2.sort();
double res = 0;
int i = 0, j = 0;
Feature f1 = v1.get(0);
Feature f2 = v2.get(0);
while (f1 != null && f2 != null) {
if (f1.equals(f2)) {
res += f1.getStrength() * f2.getStrength();
f1 = v1.get(++i);
f2 = v2.get(++j);
} else if (f1.compareTo(f2) < 0)
f1 = v1.get(++i);
else
f2 = v2.get(++j);
}
return res;
}
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
data[i][1] = featureCounts.get(i);
rowLabels[i] =
p ? lexiconInv.get(i).toString() : lexiconInv.get(i).toStringNoPackage();
data[i][j + 1] = perClassFeatureCounts.get(j, i);
rowLabels[i] =
p ? lexiconInv.get(i).toString() : lexiconInv.get(i).toStringNoPackage();
data[i][0] = i;
rowLabels[i] =
p ? lexiconInv.get(i).toString() : lexiconInv.get(i).toStringNoPackage();
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
if (label.isDiscrete())
labelArray[f] = labelLexicon.lookup(label, true);
else
labelArray[f] = labelLexicon.lookup(label.getFeatureKey(labelLexicon), true);
labelValues[f] += label.getStrength();
createPrediction(labelArray[f]);
Feature feature = featureVector.getFeature(f);
exampleArrayFeatures[f] =
lexicon.lookup(feature.getFeatureKey(lexicon, training, labelIndex), training,
labelIndex);
exampleArrayValues[f] += feature.getStrength();
代码示例来源:origin: edu.illinois.cs.cogcomp/LBJava
/**
* Return the feature that should be used to index this feature into a lexicon. This method
* simply calls <code>getFeatureKey(lexicon, true,
* -1)</code>.
*
* @see #getFeatureKey(Lexicon,boolean,int)
* @param lexicon The lexicon into which this feature will be indexed.
* @return A feature object appropriate for use as the key of a map.
**/
public Feature getFeatureKey(Lexicon lexicon) {
return getFeatureKey(lexicon, true, -1);
}
代码示例来源:origin: edu.illinois.cs.cogcomp/saul
} else {
Feature label = labelLexicon.lookupKey(0);
if (!label.isDiscrete()) {
Attribute a = new Attribute(label.getStringIdentifier());
attributeInfo.addElement(a);
} else {
FastVector valueVector = new FastVector(labelLexicon.size());
for (int v = 0; v < labelLexicon.size(); v++)
valueVector.addElement(labelLexicon.lookupKey(v).getStringValue());
Attribute a = new Attribute(label.getGeneratingClassifier(), valueVector);
attributeInfo.addElement(a);
for (int featureIndex = 0; featureIndex < lexicon.size(); ++featureIndex) {
Feature f = lexicon.lookupKey(featureIndex);
Attribute a = f.isDiscrete() ?
new Attribute(f.toString(), binaryValues) :
new Attribute(f.toString());
代码示例来源:origin: CogComp/cogcomp-nlp
public FeatureVector classify(Object __example)
{
if (!(__example instanceof NEWord))
{
String type = __example == null ? "null" : __example.getClass().getName();
System.err.println("Classifier 'FeaturesLevel2$$5(NEWord)' defined on line 521 of LbjTagger.lbj received '" + type + "' as input.");
new Exception().printStackTrace();
System.exit(1);
}
FeatureVector __result;
__result = new FeatureVector();
FeatureVector leftVector = left.classify(__example);
int N = leftVector.featuresSize();
FeatureVector rightVector = right.classify(__example);
int M = rightVector.featuresSize();
for (int i = 0; i < N; ++i)
{
Feature lf = leftVector.getFeature(i);
for (int j = 0; j < M; ++j)
{
Feature rf = rightVector.getFeature(j);
if (lf.equals(rf)) continue;
__result.addFeature(lf.conjunction(rf, this));
}
}
__result.sort();
return __result;
}
代码示例来源:origin: CogComp/cogcomp-nlp
FeatureVector fv2 = features2.classify(w);
for (int k = 0; k < fv1.size(); k++) {
String s = fv1.getFeature(k).toString();
out.print(" " + s.substring(s.indexOf(':') + 1, s.length()));
String s = fv2.getFeature(k).toString();
out.print(" " + s.substring(s.indexOf(':') + 1, s.length()));
代码示例来源:origin: CogComp/cogcomp-nlp
f = f.getFeatureKey(lexicon, trainingMode, -1);
代码示例来源:origin: CogComp/cogcomp-nlp
public String discreteValue(Object __example) {
if (!(__example instanceof Token)) {
String type = __example == null ? "null" : __example.getClass().getName();
System.err
.println("Classifier 'labelTwoAfterU(Token)' defined on line 95 of POSUnknown.lbj received '"
+ type + "' as input.");
new Exception().printStackTrace();
System.exit(1);
}
return cachedFeatureValue(__example).getStringValue();
}
代码示例来源:origin: CogComp/cogcomp-nlp
public FeatureVector classify(Object __example)
{
if (!(__example instanceof NEWord))
{
String type = __example == null ? "null" : __example.getClass().getName();
System.err.println("Classifier 'FeaturesLevel1Only$$4(NEWord)' defined on line 370 of LbjTagger.lbj received '" + type + "' as input.");
new Exception().printStackTrace();
System.exit(1);
}
FeatureVector __result;
__result = new FeatureVector();
FeatureVector leftVector = left.classify(__example);
int N = leftVector.featuresSize();
FeatureVector rightVector = right.classify(__example);
int M = rightVector.featuresSize();
for (int i = 0; i < N; ++i)
{
Feature lf = leftVector.getFeature(i);
for (int j = 0; j < M; ++j)
{
Feature rf = rightVector.getFeature(j);
if (lf.equals(rf)) continue;
__result.addFeature(lf.conjunction(rf, this));
}
}
__result.sort();
return __result;
}
内容来源于网络,如有侵权,请联系作者删除!