water.H2O.unimpl()方法的使用及代码示例

x33g5p2x  于2022-01-20 转载在 其他  
字(5.9k)|赞(0)|评价(0)|浏览(158)

本文整理了Java中water.H2O.unimpl()方法的一些代码示例,展示了H2O.unimpl()的具体用法。这些代码示例主要来源于Github/Stackoverflow/Maven等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。H2O.unimpl()方法的具体详情如下:
包路径:water.H2O
类名称:H2O
方法名:unimpl

H2O.unimpl介绍

暂无

代码示例

代码示例来源:origin: h2oai/h2o-3

public Maxout(DeepLearningParameters params, short k, int units) { super(units);
 _k = k;
 _maxIncoming=new int[params._mini_batch_size][];
 for (int i=0;i<_maxIncoming.length;++i) _maxIncoming[i]=new int[units];
 if (_k!=2) throw H2O.unimpl("Maxout is currently hardcoded for 2 channels. Trivial to enable k > 2 though.");
}
@Override protected void fprop(long seed, boolean training, int n) {

代码示例来源:origin: h2oai/h2o-3

@Override
protected double[] score0(double data[], double preds[]) {
 throw H2O.unimpl();
}

代码示例来源:origin: h2oai/h2o-3

public void mult(double N) {
 throw H2O.unimpl();
}
public void div(double N) {

代码示例来源:origin: h2oai/h2o-3

@Override
public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
 throw H2O.unimpl("No Model Metrics for ExampleModel.");
}

代码示例来源:origin: h2oai/h2o-3

@Override
public double[] score0(Chunk[] cs, int foo, double data[], double preds[]) {
 throw H2O.unimpl();
}

代码示例来源:origin: h2oai/h2o-3

@Override
public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
 throw H2O.unimpl("GrepModel does not have Model Metrics.");
}

代码示例来源:origin: h2oai/h2o-3

@Override public void map(Chunk [] chks){
 // Even though this is an MRTask over a Frame, map(Chunk [] chks) should not be called for this task.
 //  Instead, we do a custom 2-stage local pass (launched from setupLocal) using LocalMR.
 //
 // There are 2 reasons for that:
 //    a) We have 2 local passes. 1st pass scores the trees and sorts rows, 2nd pass starts after the 1st pass is done and computes the histogram.
 //       Conceptually two tasks but since we do not need global result we want to do the two passes inside of 1 task - no need to insert extra communication overhead here.
 //    b) To reduce the memory overhead in pass 2(in case we're making private DHistogram copies).
 //       There is a private copy made for each task. MRTask forks one task per one line of chunks and we do not want to make too many copies.
 //       By reusing the same DHisto for multiple chunks we save memory and calls to reduce.
 //
 throw H2O.unimpl();
}

代码示例来源:origin: h2oai/h2o-3

@Override
public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
 throw H2O.unimpl("No Model Metrics for Word2Vec.");
}

代码示例来源:origin: h2oai/h2o-3

public void add(DeepWaterModelInfo other) {
 throw H2O.unimpl();
}
public void mult(double N) {

代码示例来源:origin: h2oai/h2o-3

protected boolean checkKKTsMultinomial(){
 if(_activeData._activeCols == null) return true;
 throw H2O.unimpl();
}

代码示例来源:origin: h2oai/h2o-3

@Override
public Frame scoreDeepFeatures(Frame frame, String layer, Job j) {
 throw H2O.unimpl("Cannot extract named hidden layer '" + layer + "' for H2O DeepLearning.");
}

代码示例来源:origin: h2oai/h2o-3

@Override
public Frame scoreAutoEncoder(Frame frame, Key destination_key, boolean reconstruction_error_per_feature) {
 throw H2O.unimpl();
}

代码示例来源:origin: h2oai/h2o-3

@Override
public Frame scoreDeepFeatures(Frame frame, int layer) {
 throw H2O.unimpl();
}

代码示例来源:origin: h2oai/h2o-3

@Override
public Frame scoreDeepFeatures(Frame frame, int layer, Job j) {
 throw H2O.unimpl();
}

代码示例来源:origin: h2oai/h2o-3

static void checkCompleteness() {
 for (Field f : hex.deepwater.DeepWaterParameters.class.getDeclaredFields())
  if (!ArrayUtils.contains(cp_not_modifiable, f.getName())
    &&
    !ArrayUtils.contains(cp_modifiable, f.getName())
    ) {
   if (f.getName().equals("_hidden")) continue;
   if (f.getName().equals("_ignored_columns")) continue;
   if (f.getName().equals("$jacocoData")) continue; // If code coverage is enabled
   throw H2O.unimpl("Please add " + f.getName() + " to either cp_modifiable or cp_not_modifiable");
  }
}

代码示例来源:origin: h2oai/h2o-3

static void checkCompleteness() {
 for (Field f : DeepLearningParameters.class.getDeclaredFields())
  if (!ArrayUtils.contains(cp_not_modifiable, f.getName())
      &&
      !ArrayUtils.contains(cp_modifiable, f.getName())
      ) {
   if (f.getName().equals("_hidden")) continue;
   if (f.getName().equals("_ignored_columns")) continue;
 if (f.getName().equals("$jacocoData")) continue; // If code coverage is enabled
   throw H2O.unimpl("Please add " + f.getName() + " to either cp_modifiable or cp_not_modifiable");
  }
}

代码示例来源:origin: h2oai/h2o-3

@Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
 switch(_output.getModelCategory()) {
  case Binomial:    return new ModelMetricsBinomial.MetricBuilderBinomial(domain);
  case Multinomial: return new ModelMetricsMultinomial.MetricBuilderMultinomial(domain.length,domain);
  default: throw H2O.unimpl();
 }
}

代码示例来源:origin: h2oai/h2o-3

@Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
 switch(_output.getModelCategory()) {
  case Binomial:    return new ModelMetricsBinomial.MetricBuilderBinomial(domain);
  case Multinomial: return new ModelMetricsMultinomial.MetricBuilderMultinomial(_output.nclasses(),domain);
  case Regression:  return new ModelMetricsRegression.MetricBuilderRegression();
  default: throw H2O.unimpl();
 }
}

代码示例来源:origin: h2oai/h2o-3

@Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
 switch(_output.getModelCategory()) {
  case Binomial:    return new ModelMetricsBinomial.MetricBuilderBinomial(domain);
  case Multinomial: return new ModelMetricsMultinomial.MetricBuilderMultinomial(_output.nclasses(),domain);
  case Regression:  return new ModelMetricsRegression.MetricBuilderRegression();
  case AutoEncoder: return new ModelMetricsAutoEncoder.MetricBuilderAutoEncoder(_output.nfeatures());
  default: throw H2O.unimpl("Invalid ModelCategory " + _output.getModelCategory());
 }
}

代码示例来源:origin: h2oai/h2o-3

@Override public ModelMetrics.MetricBuilder makeMetricBuilder(String[] domain) {
 switch(_output.getModelCategory()) {
  case Binomial:    return new ModelMetricsBinomial.MetricBuilderBinomial(domain);
  case Multinomial: return new ModelMetricsMultinomial.MetricBuilderMultinomial(_output.nclasses(),domain);
  case Regression:  return new ModelMetricsRegression.MetricBuilderRegression();
  case AutoEncoder: return new ModelMetricsAutoEncoder.MetricBuilderAutoEncoder(_output.nfeatures());
  default: throw H2O.unimpl("Invalid ModelCategory " + _output.getModelCategory());
 }
}

相关文章