本文整理了Java中org.deeplearning4j.nn.api.Layer.setParams()
方法的一些代码示例,展示了Layer.setParams()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Layer.setParams()
方法的具体详情如下:
包路径:org.deeplearning4j.nn.api.Layer
类名称:Layer
方法名:setParams
暂无
代码示例来源:origin: org.deeplearning4j/deeplearning4j-scaleout-akka
@Override
public void update(Object... o) {
INDArray arr = (INDArray) o[0];
neuralNetwork.setParams(arr);
}
代码示例来源:origin: org.deeplearning4j/deeplearning4j-nn
@Override
public void setParams(INDArray params) {
insideLayer.setParams(params);
}
代码示例来源:origin: org.deeplearning4j/cdh4
/**
* Collect the update from the master node and apply it to the local
* parameter vector
*
* TODO: check the state changes of the incoming message!
*
*/
@Override
public void update(ParameterVectorUpdateable masterUpdateUpdateable) {
neuralNetwork.setParams(masterUpdateUpdateable.get());
}
代码示例来源:origin: org.deeplearning4j/deeplearning4j-nn
private void copyParamsFromSubsetMLNToOrig() {
for (int i = frozenInputLayer + 1; i < origMLN.getnLayers(); i++) {
origMLN.getLayer(i).setParams(unFrozenSubsetMLN.getLayer(i - frozenInputLayer - 1).params());
}
}
代码示例来源:origin: org.deeplearning4j/deeplearning4j-nn
private void copyOrigParamsToSubsetGraph() {
for (GraphVertex aVertex : unFrozenSubsetGraph.getVertices()) {
if (!aVertex.hasLayer())
continue;
aVertex.getLayer().setParams(origGraph.getLayer(aVertex.getVertexName()).params());
}
}
代码示例来源:origin: org.deeplearning4j/deeplearning4j-nn
private void copyParamsFromSubsetGraphToOrig() {
for (GraphVertex aVertex : unFrozenSubsetGraph.getVertices()) {
if (!aVertex.hasLayer())
continue;
origGraph.getVertex(aVertex.getVertexName()).getLayer().setParams(aVertex.getLayer().params());
}
}
代码示例来源:origin: CampagneLaboratory/variationanalysis
private void transferParams() throws IOException {
if (args().pretrainingModelPath != null) {
ModelLoader pretrainingLoader = new ModelLoader(args().pretrainingModelPath);
Model savedPretrainingNetwork = pretrainingLoader.loadModel(args().pretrainingModelName);
ComputationGraph savedPretrainingGraph = savedPretrainingNetwork instanceof ComputationGraph ?
(ComputationGraph) savedPretrainingNetwork :
null;
if (savedPretrainingNetwork == null || savedPretrainingGraph == null
|| savedPretrainingGraph.getUpdater() == null || savedPretrainingGraph.getLayers() == null) {
throw new RuntimeException(String.format("Unable to load model for pretraining from %s",
args().pretrainingModelPath));
} else {
for (String inputLayer : assembler.getInputNames()) {
computationGraph.getLayer(inputLayer).setParams(
savedPretrainingGraph.getLayer(inputLayer).params());
}
for (String componentLayer : assembler.getComponentNames()) {
computationGraph.getLayer(componentLayer).setParams(
savedPretrainingGraph.getLayer(componentLayer).params());
}
}
String modelPrefix = args().modelPrefix != null ? args().modelPrefix : "pretraining";
ComputationGraphSaver graphSaver = new ComputationGraphSaver(modelPath);
graphSaver.saveModel(computationGraph, modelPrefix);
}
}
}
代码示例来源:origin: org.deeplearning4j/deeplearning4j-nn
@Override
public void setParams(INDArray params) {
if (params == flattenedParams)
return; //No op
if (this.flattenedParams != null && this.flattenedParams.length() == params.length()) {
this.flattenedParams.assign(params);
return;
}
int idx = 0;
for (int i = 0; i < topologicalOrder.length; i++) {
if (!vertices[topologicalOrder[i]].hasLayer())
continue;
Layer layer = vertices[topologicalOrder[i]].getLayer();
int range = layer.numParams();
if (range <= 0)
continue; //Some layers: no parameters (subsampling etc)
INDArray get = params.get(NDArrayIndex.point(0), NDArrayIndex.interval(idx, range + idx));
layer.setParams(get);
idx += range;
}
}
代码示例来源:origin: org.deeplearning4j/deeplearning4j-nn
continue; //Some layers: no parameters (subsampling, etc)
INDArray get = params.get(NDArrayIndex.point(0), NDArrayIndex.interval(idx, range + idx));
layer.setParams(get);
idx += range;
代码示例来源:origin: org.deeplearning4j/deeplearning4j-nn
if (editedVertices.contains(layerName))
continue; //keep the changed params
layer.setParams(origGraph.getLayer(layerName).params().dup()); //copy over origGraph params
代码示例来源:origin: org.deeplearning4j/deeplearning4j-nn
private void initHelperMLN() {
if (applyFrozen) {
org.deeplearning4j.nn.api.Layer[] layers = origMLN.getLayers();
for (int i = frozenTill; i >= 0; i--) {
//unchecked?
layers[i] = new FrozenLayer(layers[i]);
}
origMLN.setLayers(layers);
}
for (int i = 0; i < origMLN.getnLayers(); i++) {
if (origMLN.getLayer(i) instanceof FrozenLayer) {
frozenInputLayer = i;
}
}
List<NeuralNetConfiguration> allConfs = new ArrayList<>();
for (int i = frozenInputLayer + 1; i < origMLN.getnLayers(); i++) {
allConfs.add(origMLN.getLayer(i).conf());
}
MultiLayerConfiguration c = origMLN.getLayerWiseConfigurations();
unFrozenSubsetMLN = new MultiLayerNetwork(new MultiLayerConfiguration.Builder().backprop(c.isBackprop())
.inputPreProcessors(c.getInputPreProcessors()).pretrain(c.isPretrain())
.backpropType(c.getBackpropType()).tBPTTForwardLength(c.getTbpttFwdLength())
.tBPTTBackwardLength(c.getTbpttBackLength()).confs(allConfs).build());
unFrozenSubsetMLN.init();
//copy over params
for (int i = frozenInputLayer + 1; i < origMLN.getnLayers(); i++) {
unFrozenSubsetMLN.getLayer(i - frozenInputLayer - 1).setParams(origMLN.getLayer(i).params());
}
//unFrozenSubsetMLN.setListeners(origMLN.getListeners());
}
内容来源于网络,如有侵权,请联系作者删除!