本文整理了Java中lombok.NonNull
类的一些代码示例,展示了NonNull
类的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。NonNull
类的具体详情如下:
包路径:lombok.NonNull
类名称:NonNull
暂无
代码示例来源:origin: spring-projects/spring-data-elasticsearch
/**
* An {@link ReactiveElasticsearchQueryExecution} that wraps the results of the given delegate with the given result
* processing.
*/
@RequiredArgsConstructor
final class ResultProcessingExecution implements ReactiveElasticsearchQueryExecution {
private final @NonNull ReactiveElasticsearchQueryExecution delegate;
private final @NonNull Converter<Object, Object> converter;
@Override
public Object execute(Query query, Class<?> type, String indexName, String indexType,
@Nullable Class<?> targetType) {
return converter.convert(delegate.execute(query, type, indexName, indexType, targetType));
}
}
代码示例来源:origin: spring-projects/spring-data-mongodb
@RequiredArgsConstructor
@FieldDefaults(level = AccessLevel.PRIVATE, makeFinal = true)
static class ExecutableRemoveSupport<T> implements ExecutableRemove<T>, RemoveWithCollection<T> {
@NonNull MongoTemplate template;
@NonNull Class<T> domainType;
Query query;
@Nullable String collection;
代码示例来源:origin: lets-blade/blade
@Override
public Response contentType(@NonNull String contentType) {
this.headers.put("Content-Type", contentType);
return this;
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* This method samples value from Source array to Target, with probabilites provided in Probs argument
*
* @param source
* @param probs
* @param target
* @return
*/
public static INDArray choice(@NonNull INDArray source, @NonNull INDArray probs, @NonNull INDArray target,
@NonNull org.nd4j.linalg.api.rng.Random rng) {
if (source.length() != probs.length())
throw new ND4JIllegalStateException("Nd4j.choice() requires lengths of Source and Probs to be equal");
return Nd4j.getExecutioner().exec(new Choice(source, probs, target), rng);
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* This op fills Z with binomial distribution over given trials with single given probability for all trials
* @param z
* @param trials
* @param probability
*/
public BinomialDistribution(@NonNull INDArray z, int trials, double probability) {
init(z, z, z, z.lengthLong());
this.trials = trials;
this.probability = probability;
this.extraArgs = new Object[] {(double) this.trials, this.probability};
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* This op fills Z with binomial distribution over given trials with probability for each trial given as probabilities INDArray
*
* @param z
* @param probabilities
*/
public BinomialDistributionEx(@NonNull INDArray z, @NonNull INDArray probabilities) {
// FIXME: int cast
this(z, (int) probabilities.length(), probabilities);
}
代码示例来源:origin: deeplearning4j/nd4j
public static INDArray tailor4d2d(@NonNull INDArray data) {
long instances = data.size(0);
long channels = data.size(1);
long height = data.size(2);
long width = data.size(3);
INDArray in2d = Nd4j.create(channels, height * width * instances);
long tads = data.tensorssAlongDimension(3, 2, 0);
for (int i = 0; i < tads; i++) {
INDArray thisTAD = data.tensorAlongDimension(i, 3, 2, 0);
in2d.putRow(i, Nd4j.toFlattened(thisTAD));
}
return in2d.transposei();
}
代码示例来源:origin: deeplearning4j/nd4j
public static INDArray tailor3d2d(@NonNull INDArray data, INDArray mask) {
if (data.size(0) != mask.size(0) || data.size(2) != mask.size(1)) {
throw new IllegalArgumentException(
"Invalid mask array/data combination: got data with shape [minibatch, vectorSize, timeSeriesLength] = "
INDArray subset = Nd4j.pullRows(as2d, 1, rowsToPull); //Tensor along dimension 1 == rows
return subset;
代码示例来源:origin: deeplearning4j/nd4j
/**
* Atan2 operation, new INDArray instance will be returned
* Note the order of x and y parameters is opposite to that of java.lang.Math.atan2
*
* @param x the abscissa coordinate
* @param y the ordinate coordinate
* @return the theta from point (r, theta) when converting (x,y) from to cartesian to polar coordinates
*/
public static INDArray atan2(@NonNull INDArray x, @NonNull INDArray y) {
return Nd4j.getExecutioner()
.execAndReturn(new OldAtan2Op(x, y, Nd4j.createUninitialized(x.shape(), x.ordering())));
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* This method does element-wise comparison for 2 equal-sized matrices, for each element that matches Condition
*
* @param to
* @param from
* @param condition
*/
public static void replaceWhere(@NonNull INDArray to, @NonNull INDArray from, @NonNull Condition condition) {
if (!(condition instanceof BaseCondition))
throw new UnsupportedOperationException("Only static Conditions are supported");
if (to.lengthLong() != from.lengthLong())
throw new IllegalStateException("Mis matched length for to and from");
Nd4j.getExecutioner().exec(new CompareAndReplace(to, from, condition));
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* Choose from the inputs based on the given condition.
* This returns a row vector of all elements fulfilling the
* condition listed within the array for input.
* The double and integer arguments are only relevant
* for scalar operations (like when you have a scalar
* you are trying to compare each element in your input against)
*
* @param input the input to filter
* @param tArgs the double args
* @param iArgs the integer args
* @param condition the condition to filter based on
* @return a row vector of the input elements that are true
* ffor the given conditions
*/
public static INDArray chooseFrom(@NonNull INDArray[] input, @NonNull List<Double> tArgs, @NonNull List<Integer> iArgs, @NonNull Condition condition) {
Choose choose = new Choose(input,iArgs,tArgs,condition);
Nd4j.getExecutioner().exec(choose);
int secondOutput = choose.getOutputArgument(1).getInt(0);
if(secondOutput < 1) {
return null;
}
INDArray ret = choose.getOutputArgument(0).get(NDArrayIndex.interval(0,secondOutput));
ret = ret.reshape(ret.length());
return ret;
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* @param mean row vector of means
* @param std row vector of standard deviations
*/
public DistributionStats(@NonNull INDArray mean, @NonNull INDArray std) {
Transforms.max(std, Nd4j.EPS_THRESHOLD, false);
if (std.min(1) == Nd4j.scalar(Nd4j.EPS_THRESHOLD)) {
logger.info("API_INFO: Std deviation found to be zero. Transform will round up to epsilon to avoid nans.");
}
this.mean = mean;
this.std = std;
}
代码示例来源:origin: deeplearning4j/nd4j
/**
*
* @param d1
* @param d2
* @return
*/
public static double euclideanDistance(@NonNull INDArray d1, @NonNull INDArray d2) {
return d1.distance2(d2);
}
代码示例来源:origin: deeplearning4j/nd4j
/**
*
* @param d1
* @param d2
* @return
*/
public static double manhattanDistance(@NonNull INDArray d1, @NonNull INDArray d2) {
return d1.distance1(d2);
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* Meshgrid op. Returns a pair of arrays where values are broadcast on a 2d grid.<br>
* For example, if x = [1,2,3,4] and y = [5,6,7], then:<br>
* out[0] =<br>
* [1,2,3,4]<br>
* [1,2,3,4]<br>
* [1,2,3,4]<br>
* <br>
* out[1] =<br>
* [5,5,5,5]<br>
* [6,6,6,6]<br>
* [7,7,7,7]<br>
* <br>
*
* @param x X array input
* @param y Y array input
* @return INDArray[] of length 2, shape [y.length, x.length]
*/
public static INDArray[] meshgrid(@NonNull INDArray x, @NonNull INDArray y){
Preconditions.checkArgument(x.isVectorOrScalar(), "X must be a vector");
Preconditions.checkArgument(y.isVectorOrScalar(), "Y must be a vector");
INDArray xOut = Nd4j.createUninitialized(y.length(), x.length());
INDArray yOut = Nd4j.createUninitialized(y.length(), x.length());
CustomOp op = DynamicCustomOp.builder("meshgrid")
.addInputs(x, y)
.addOutputs(xOut, yOut)
.build();
Nd4j.getExecutioner().exec(op);
return new INDArray[]{xOut, yOut};
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* Choose from the inputs based on the given condition.
* This returns a row vector of all elements fulfilling the
* condition listed within the array for input
* @param input the input to filter
* @param condition the condition to filter based on
* @return a row vector of the input elements that are true
* ffor the given conditions
*/
public static INDArray chooseFrom(@NonNull INDArray[] input,@NonNull Condition condition) {
Choose choose = new Choose(input,condition);
Nd4j.getExecutioner().exec(choose);
int secondOutput = choose.getOutputArgument(1).getInt(0);
if(secondOutput < 1) {
return null;
}
return choose.getOutputArgument(0);
}
代码示例来源:origin: deeplearning4j/nd4j
public ByteBuffer asFlatBuffers(@NonNull ExecutorConfiguration configuration) {
Nd4j.getExecutioner().commit();
FlatBufferBuilder bufferBuilder = new FlatBufferBuilder(1024);
val idCounter = new AtomicInteger(0);
int array = arr.toFlatArray(bufferBuilder);
int id = IntPair.createIntPair(bufferBuilder, idCounter.get(), 0);
int array = arr.toFlatArray(bufferBuilder);
int id = IntPair.createIntPair(bufferBuilder, ++idx, 0);
代码示例来源:origin: spring-projects/spring-data-mongodb
@RequiredArgsConstructor
@FieldDefaults(level = AccessLevel.PRIVATE, makeFinal = true)
static class ExecutableAggregationSupport<T>
implements AggregationWithAggregation<T>, ExecutableAggregation<T>, TerminatingAggregation<T> {
@NonNull MongoTemplate template;
@NonNull Class<T> domainType;
@Nullable Aggregation aggregation;
@Nullable String collection;
代码示例来源:origin: lets-blade/blade
/**
* Add blade loader
*
* @param loader
* @return
*/
public Blade addLoader(@NonNull BladeLoader loader) {
this.loaders.add(loader);
return this;
}
代码示例来源:origin: deeplearning4j/nd4j
/**
* Cosine similarity
*
* @param d1 the first vector
* @param d2 the second vector
* @return the cosine similarities between the 2 arrays
*
*/
public static double cosineSim(@NonNull INDArray d1, @NonNull INDArray d2) {
return Nd4j.getExecutioner().execAndReturn(new CosineSimilarity(d1, d2, d1.length())).getFinalResult()
.doubleValue();
}
内容来源于网络,如有侵权,请联系作者删除!