JUC共享模型下

x33g5p2x  于2021-12-30 转载在 其他  
字(42.8k)|赞(0)|评价(0)|浏览(353)

wait notify

小故事 - 为什么需要 wait

由于条件不满足,小南不能继续进行计算

但小南如果一直占用着锁,其它人就得一直阻塞,效率太低

于是老王单开了一间休息室(调用 wait 方法),让小南到休息室(WaitSet)等着去了,但这时锁释放开,其它人可以由老王随机安排进屋

直到小M将烟送来,大叫一声 [ 你的烟到了 ] (调用 notify 方法)

小南于是可以离开休息室,重新进入竞争锁的队列

wait notify 原理

  • Owner 线程发现条件不满足,调用 wait 方法,即可进入 WaitSet 变为 WAITING 状态
  • BLOCKED 和 WAITING 的线程都处于阻塞状态,不占用 CPU 时间片
  • BLOCKED 线程会在 Owner 线程释放锁时唤醒
  • WAITING 线程会在 Owner 线程调用 notify 或 notifyAll时唤醒,但唤醒后并不意味者立刻获得锁,仍需进入EntryList 重新竞争
  • 如果同时有两个WAITING 的线程,当他们被唤醒时,先进入EntryList 重新竞争锁,如果竞争失败,没有获取到锁的那个线程,会再次进入等待状态

API 介绍

  • obj.wait() 让进入 object 监视器的线程到 waitSet 等待
  • obj.notify() 在 object 上正在 waitSet 等待的线程中挑一个唤醒
  • obj.notifyAll() 让 object 上正在 waitSet 等待的线程全部唤醒

它们都是线程之间进行协作的手段,都属于 Object 对象的方法。必须获得此对象的锁,才能调用这几个方法

notify和notifyall方法执行的前提也都是对象获得了锁

@Slf4j
public class Main
{
    final static Object obj = new Object();
    public static void main(String[] args) throws InterruptedException {
        new Thread(() -> {
            synchronized (obj) {
                log.debug("执行....");
                try {
                    obj.wait(); // 让线程在obj上一直等待下去
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.debug("其它代码....");
            }
        }).start();
        new Thread(() -> {
            synchronized (obj) {
                log.debug("执行....");
                try {
                    obj.wait(); // 让线程在obj上一直等待下去
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.debug("其它代码....");
            }
        }).start();
        // 主线程两秒后执行
        sleep(2);
        log.debug("唤醒 obj 上其它线程");
        synchronized (obj) {
            obj.notify(); // 唤醒obj上一个线程
            // obj.notifyAll(); // 唤醒obj上所有等待线程
        }
    }
}

notify 的一种结果

20:00:53.096 [Thread-0] c.TestWaitNotify - 执行.... 
20:00:53.099 [Thread-1] c.TestWaitNotify - 执行.... 
20:00:55.096 [main] c.TestWaitNotify - 唤醒 obj 上其它线程
20:00:55.096 [Thread-0] c.TestWaitNotify - 其它代码....

notifyAll 的结果

19:58:15.457 [Thread-0] c.TestWaitNotify - 执行.... 
19:58:15.460 [Thread-1] c.TestWaitNotify - 执行.... 
19:58:17.456 [main] c.TestWaitNotify - 唤醒 obj 上其它线程
19:58:17.456 [Thread-1] c.TestWaitNotify - 其它代码.... 
19:58:17.456 [Thread-0] c.TestWaitNotify - 其它代码....
  • wait() 方法会释放对象的锁,进入 WaitSet 等待区,从而让其他线程就机会获取对象的锁。无限制等待,直到 notify为止
  • wait(long n) 有时限的等待, 到 n 毫秒后结束等待,或是被 notify

wait notify 的正确姿势

sleep(long n) 和 wait(long n) 的区别

    1. sleep 是 Thread 方法,而 wait 是 Object 的方法
    1. sleep 不需要强制和 synchronized 配合使用,但 wait 需要和 synchronized 一起用
    1. sleep 在睡眠的同时,不会释放对象锁的,但 wait 在等待的时候会释放对象锁
    1. 它们都是状态 TIMED_WAITING

使用案例

思考下面的解决方案好不好,为什么?

import lombok.extern.slf4j.Slf4j;

import static java.lang.Thread.sleep;

@Slf4j
public class Main {
    static final Object room = new Object();
    static boolean hasCigarette = false;
    static boolean hasTakeout = false;

    public static void main(String[] args)
    {
        new Thread(() -> {
            synchronized (room) {
                log.debug("有烟没?[{}]", hasCigarette);
                if (!hasCigarette) {
                    log.debug("没烟,先歇会!");
                    try {
                        sleep(2);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("有烟没?[{}]", hasCigarette);
                if (hasCigarette) {
                    log.debug("可以开始干活了");
                }
            }
        }, "小南").start();
        for (int i = 0; i < 5; i++) {
            new Thread(() -> {
                synchronized (room) {
                    log.debug("可以开始干活了");
                }
            }, "其它人").start();
        }
        try {
            //抛出可能被其他线程打断的异常
            sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        new Thread(() -> {
            // 这里能不能加 synchronized (room)?
            hasCigarette = true;
            log.debug("烟到了噢!");
        }, "送烟的").start();
    }
}

输出

20:49:49.883 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:49:49.887 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:49:50.882 [送烟的] c.TestCorrectPosture - 烟到了噢!
20:49:51.887 [小南] c.TestCorrectPosture - 有烟没?[true] 
20:49:51.887 [小南] c.TestCorrectPosture - 可以开始干活了
20:49:51.887 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.887 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
20:49:51.888 [其它人] c.TestCorrectPosture - 可以开始干活了
  • 其它干活的线程,都要一直阻塞,效率太低
  • 小南线程必须睡足 2s 后才能醒来,就算烟提前送到,也无法立刻醒来
  • 加了 synchronized (room) 后,就好比小南在里面反锁了门睡觉,烟根本没法送进门,main 没加
    synchronized 就好像 main 线程是翻窗户进来的
  • 解决方法,使用 wait - notify 机制

案例优化1
import lombok.extern.slf4j.Slf4j;

import static java.lang.Thread.sleep;

@Slf4j
public class Main {
    static final Object room = new Object();
    static boolean hasCigarette = false;
    static boolean hasTakeout = false;

    public static void main(String[] args)
    {
        new Thread(() -> {
            synchronized (room) {
                log.debug("有烟没?[{}]", hasCigarette);
                if (!hasCigarette) {
                    log.debug("没烟,先歇会!");
                    try {
                        room.wait(2000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("有烟没?[{}]", hasCigarette);
                if (hasCigarette) {
                    log.debug("可以开始干活了");
                }
            }
        }, "小南").start();

        for (int i = 0; i < 5; i++) {
            new Thread(() -> {
                synchronized (room) {
                    log.debug("可以开始干活了");
                }
            }, "其它人").start();
        }

        try {
            sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }

        new Thread(() -> {
            synchronized (room) {
                hasCigarette = true;
                log.debug("烟到了噢!");
                room.notify();
            }
        }, "送烟的").start();
        
    }
}

输出

20:51:42.489 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:51:42.493 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:51:42.493 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.493 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:42.494 [其它人] c.TestCorrectPosture - 可以开始干活了
20:51:43.490 [送烟的] c.TestCorrectPosture - 烟到了噢!
20:51:43.490 [小南] c.TestCorrectPosture - 有烟没?[true] 
20:51:43.490 [小南] c.TestCorrectPosture - 可以开始干活了

问题:

  • 解决了其它干活的线程阻塞的问题,但如果有其它线程也在等待条件呢?
  • 因为notify会随机唤醒一个沉睡线程,如果出现唤醒不希望唤醒的线程情况怎么办
虚假唤醒问题演示
import lombok.extern.slf4j.Slf4j;

import static java.lang.Thread.sleep;

@Slf4j
public class Main {
    static final Object room = new Object();
    static boolean hasCigarette = false;
    static boolean hasTakeout = false;

    public static void main(String[] args)
    {
        new Thread(() -> {
            synchronized (room) {
                log.debug("有烟没?[{}]", hasCigarette);
                if (!hasCigarette) {
                    log.debug("没烟,先歇会!");
                    try {
                        room.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("有烟没?[{}]", hasCigarette);
                if (hasCigarette) {
                    log.debug("可以开始干活了");
                } else {
                    log.debug("没干成活...");
                }
            }
        }, "小南").start();
        
        new Thread(() -> {
            synchronized (room) {
                Thread thread = Thread.currentThread();
                log.debug("外卖送到没?[{}]", hasTakeout);
                if (!hasTakeout) {
                    log.debug("没外卖,先歇会!");
                    try {
                        room.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("外卖送到没?[{}]", hasTakeout);
                if (hasTakeout) {
                    log.debug("可以开始干活了");
                } else {
                    log.debug("没干成活...");
                }
            }
        }, "小女").start();
        
        try {
            sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        
        new Thread(() -> {
            synchronized (room) {
                hasTakeout = true;
                log.debug("外卖到了噢!");
                room.notify();
            }
        }, "送外卖的").start();
        

    }
}

输出

20:53:12.173 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:53:12.176 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:53:12.176 [小女] c.TestCorrectPosture - 外卖送到没?[false] 
20:53:12.176 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:53:13.174 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:53:13.174 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:53:13.174 [小南] c.TestCorrectPosture - 没干成活...
  • notify 只能随机唤醒一个 WaitSet 中的线程,这时如果有其它线程也在等待,那么就可能唤醒不了正确的线
    程,称之为【虚假唤醒】
  • 解决方法,改为 notifyAll
案例优化2
new Thread(() -> {
 synchronized (room) {
 hasTakeout = true;
 log.debug("外卖到了噢!");
 room.notifyAll();
 }
}, "送外卖的").start();

输出

20:55:23.978 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:55:23.982 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:55:23.982 [小女] c.TestCorrectPosture - 外卖送到没?[false] 
20:55:23.982 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:55:24.979 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:55:24.979 [小女] c.TestCorrectPosture - 外卖送到没?[true] 
20:55:24.980 [小女] c.TestCorrectPosture - 可以开始干活了
20:55:24.980 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:55:24.980 [小南] c.TestCorrectPosture - 没干成活...
  • 用 notifyAll 仅解决某个线程的唤醒问题,但使用 if + wait 判断仅有一次机会,一旦条件不成立,就没有重新
    判断的机会了
  • 解决方法,用 while + wait,当条件不成立,再次 wait
案例优化3

将 if 改为 while

if (!hasCigarette) {
 log.debug("没烟,先歇会!");
 try {
 room.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

改动后

while (!hasCigarette) {
 log.debug("没烟,先歇会!");
 try {
 room.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

输出

20:58:34.322 [小南] c.TestCorrectPosture - 有烟没?[false] 
20:58:34.326 [小南] c.TestCorrectPosture - 没烟,先歇会!
20:58:34.326 [小女] c.TestCorrectPosture - 外卖送到没?[false] 
20:58:34.326 [小女] c.TestCorrectPosture - 没外卖,先歇会!
20:58:35.323 [送外卖的] c.TestCorrectPosture - 外卖到了噢!
20:58:35.324 [小女] c.TestCorrectPosture - 外卖送到没?[true] 
20:58:35.324 [小女] c.TestCorrectPosture - 可以开始干活了
20:58:35.324 [小南] c.TestCorrectPosture - 没烟,先歇会!
wait和notify模板写法
synchronized(lock) {
 while(条件不成立) {
 lock.wait();
 }
 // 干活
}
//另一个线程
synchronized(lock) {
 lock.notifyAll();
}

同步模式之保护性暂停

1. 定义

即 Guarded Suspension,用在一个线程等待另一个线程的执行结果

要点

  • 有一个结果需要从一个线程传递到另一个线程,让他们关联同一个 GuardedObject
  • 如果有结果不断从一个线程到另一个线程那么可以使用消息队列(见生产者/消费者)
  • JDK 中,join 的实现、Future 的实现,采用的就是此模式
  • 因为要等待另一方的结果,因此归类到同步模式

2. 实现

保护对象:

class GuardedObject 
{
    private Object response;
    private final Object lock = new Object();

    public Object get() {
        synchronized (lock) {
          // 条件不满足则等待---防止虚假唤醒,因为可能有别的线程也会调用notifyall的方法
            while (response == null) {
                try {
                    lock.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            return response;
        }
    }

    public void complete(Object response) {
        synchronized (lock) {
// 条件满足,通知等待线程
            this.response = response;
            lock.notifyAll();
        }
    }
}

应用

一个线程等待另一个线程的执行结果

import lombok.extern.slf4j.Slf4j;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.HttpURLConnection;
import java.net.URL;
import java.util.ArrayList;
import java.util.List;

@Slf4j
public class Main
{
    public static void main(String[] args) {
        GuardedObject guardedObject = new GuardedObject();
        new Thread(() -> {
            try {
              // 子线程执行下载
                List<String> response = download();
                log.debug("download complete...");
                guardedObject.complete(response);
            } catch (IOException e) {
                e.printStackTrace();
            }
        }).start();
        log.error("waiting...");
        // 主线程阻塞等待
        Object response = guardedObject.get();
        log.error("get response: [{}] lines", ((List<String>) response).size());
    }

    private static List<String> download() throws IOException {
        HttpURLConnection httpURLConnection = (HttpURLConnection) new URL("https://www.baidu.com").openConnection();
        List<String> res=new ArrayList<>();
        InputStream in;
        try(BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(httpURLConnection.getInputStream(),"UTF-8"));)
        {
         String line;
         while((line=bufferedReader.readLine())!=null)
         {
             res.add(line);
         }
        }
        return res;
    }
}

带超时版 GuardedObject

如果要控制超时时间呢

import lombok.extern.slf4j.Slf4j;

@Slf4j
class GuardedObjectV2 {
    private Object response;
    private final Object lock = new Object();

    public Object get(long millis) {
        synchronized (lock) {
             // 1) 记录最初时间
            long begin = System.currentTimeMillis();
             // 2) 已经经历的时间
            long timePassed = 0;
            while (response == null) {
                  // 4) 假设 millis 是 1000,结果在 400 时唤醒了,那么还有 600 要等
                long waitTime = millis - timePassed;
                log.debug("waitTime: {}", waitTime);
                if (waitTime <= 0) {
                    log.debug("break...");
                    break;
                }
                try {
                    lock.wait(waitTime);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                 // 3) 如果提前被唤醒,这时已经经历的时间假设为 400
                timePassed = System.currentTimeMillis() - begin;
                log.debug("timePassed: {}, object is null {}",
                        timePassed, response == null);
            }
            return response;
        }
    }

    public void complete(Object response) {
        synchronized (lock) {
             // 条件满足,通知等待线程
            this.response = response;
            log.debug("notify...");
            lock.notifyAll();
        }
    }
}

  • 测试,没有超时
public static void main(String[] args) {
        GuardedObjectV2 v2 = new GuardedObjectV2();
        new Thread(() -> {
            try {
                sleep(1);
                v2.complete(null);
                sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            v2.complete(Arrays.asList("a", "b", "c"));
        }).start();
        Object response = v2.get(2500);
        if (response != null) {
            log.debug("get response: [{}] lines", ((List<String>) response).size());
        } else {
            log.debug("can't get response");
        }
    }

输出

08:49:39.917 [main] c.GuardedObjectV2 - waitTime: 2500
08:49:40.917 [Thread-0] c.GuardedObjectV2 - notify...
08:49:40.917 [main] c.GuardedObjectV2 - timePassed: 1003, object is null true
08:49:40.917 [main] c.GuardedObjectV2 - waitTime: 1497
08:49:41.918 [Thread-0] c.GuardedObjectV2 - notify...
08:49:41.918 [main] c.GuardedObjectV2 - timePassed: 2004, object is null false
08:49:41.918 [main] c.TestGuardedObjectV2 - get response: [3] lines
  • 测试,超时
// 等待时间不足
List<String> lines = v2.get(1500);

输出

08:47:54.963 [main] c.GuardedObjectV2 - waitTime: 1500
08:47:55.963 [Thread-0] c.GuardedObjectV2 - notify...
08:47:55.963 [main] c.GuardedObjectV2 - timePassed: 1002, object is null true
08:47:55.963 [main] c.GuardedObjectV2 - waitTime: 498
08:47:56.461 [main] c.GuardedObjectV2 - timePassed: 1500, object is null true
08:47:56.461 [main] c.GuardedObjectV2 - waitTime: 0
08:47:56.461 [main] c.GuardedObjectV2 - break...
08:47:56.461 [main] c.TestGuardedObjectV2 - can't get response
08:47:56.963 [Thread-0] c.GuardedObjectV2 - notify...

原理之 join

是调用者轮询检查线程 alive 状态

t1.join();

等价于下面的代码

synchronized (t1) {
 // 调用者线程进入 t1 的 waitSet 等待, 直到 t1 运行结束
 while (t1.isAlive()) {
 t1.wait(0);
 }
}

join源码

public final synchronized void join(long millis)
    throws InterruptedException {
        long base = System.currentTimeMillis();
        long now = 0;

        if (millis < 0) {
            throw new IllegalArgumentException("timeout value is negative");
        }

        if (millis == 0) {
            while (isAlive()) {
                wait(0);
            }
        } else {
            while (isAlive()) {
                long delay = millis - now;
                if (delay <= 0) {
                    break;
                }
                wait(delay);
                now = System.currentTimeMillis() - base;
            }
        }
    }

注意区分被监控的线程和沉睡等待中的线程区别:

//t1线程是被监控的线程
Thread t1 = new Thread(() -> {
 sleep(2);
 });

//在主线程中调用join方法,因此主线程是沉睡等待中的线程
t1.join();

注意
join 体现的是【保护性暂停】模式

多任务版 GuardedObject

图中 Futures 就好比居民楼一层的信箱(每个信箱有房间编号),左侧的 t0,t2,t4 就好比等待邮件的居民,右
侧的 t1,t3,t5 就好比邮递员

如果需要在多个类之间使用 GuardedObject 对象,作为参数传递不是很方便,因此设计一个用来解耦的中间类,
这样不仅能够解耦【结果等待者】和【结果生产者】,还能够同时支持多个任务的管理

实现

新增 id 用来标识 Guarded Object

class GuardedObject {
    // 标识 Guarded Object
    private int id;
    public GuardedObject(int id) {
        this.id = id;
    }
    public int getId() {
        return id;
    }
    // 结果
    private Object response;
    // 获取结果
    // timeout 表示要等待多久 2000
    public Object get(long timeout) {
        synchronized (this) {
            // 开始时间 15:00:00
            long begin = System.currentTimeMillis();
            // 经历的时间
            long passedTime = 0;
            while (response == null) {
                // 这一轮循环应该等待的时间
                long waitTime = timeout - passedTime;
                // 经历的时间超过了最大等待时间时,退出循环
                if (timeout - passedTime <= 0) {
                    break;
                }
                try {
                    this.wait(waitTime); // 虚假唤醒 15:00:01
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 求得经历时间
                passedTime = System.currentTimeMillis() - begin; // 15:00:02 1s
            }
            return response;
        }
    }
    // 产生结果
    public void complete(Object response) {
        synchronized (this) {
            // 给结果成员变量赋值
            this.response = response;
            this.notifyAll();
        }
    }
}

中间解耦类

import java.util.Hashtable;
import java.util.Map;
import java.util.Set;

class Mailboxes {
 //Hashtable是线程安全的
 private static Map<Integer, GuardedObject> boxes = new Hashtable<>();
 //每个居民对应的id
 private static int id = 1;

 // 产生唯一 id
 private static synchronized int generateId() 
 {
  return id++;
 }

 public static GuardedObject getGuardedObject(int id)
 {
  return boxes.remove(id);
 }

 public static GuardedObject createGuardedObject() 
 {
  GuardedObject go = new GuardedObject(generateId());
  boxes.put(go.getId(), go);
  return go;
 }

 public static Set<Integer> getIds()
 {
  return boxes.keySet();
 }
}

业务相关类

刁民:

import lombok.extern.slf4j.Slf4j;

@Slf4j
class People extends Thread {
    @Override
    public void run() 
    {
        // 收信
        GuardedObject guardedObject = Mailboxes.createGuardedObject();
        log.debug("开始收信 id:{}", guardedObject.getId());
        //居民最多等五秒,这五秒期间收不到信的话,刁民就走了
        Object mail = guardedObject.get(5000);
        log.debug("收到信 id:{}, 内容:{}", guardedObject.getId(), mail);
    }
}

邮局员工

import lombok.extern.slf4j.Slf4j;

@Slf4j
class Postman extends Thread {
    private int id;
    private String mail;

    public Postman(int id, String mail) {
        this.id = id;
        this.mail = mail;
    }

    @Override
    public void run() {
        GuardedObject guardedObject = Mailboxes.getGuardedObject(id);
        log.debug("送信 id:{}, 内容:{}", id, mail);
        guardedObject.complete(mail);
    }
}

测试

public class Main
{
    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 3; i++) {
            new People().start();
        }
        Thread.sleep(1);
        for (Integer id : Mailboxes.getIds()) {
            new Postman(id, "内容" + id).start();
        }
    }
}

某次运行结果

10:35:05.689 c.People [Thread-1] - 开始收信 id:3
10:35:05.689 c.People [Thread-2] - 开始收信 id:1
10:35:05.689 c.People [Thread-0] - 开始收信 id:2
10:35:06.688 c.Postman [Thread-4] - 送信 id:2, 内容:内容2
10:35:06.688 c.Postman [Thread-5] - 送信 id:1, 内容:内容1
10:35:06.688 c.People [Thread-0] - 收到信 id:2, 内容:内容2
10:35:06.688 c.People [Thread-2] - 收到信 id:1, 内容:内容1
10:35:06.688 c.Postman [Thread-3] - 送信 id:3, 内容:内容3
10:35:06.689 c.People [Thread-1] - 收到信 id:3, 内容:内容3

异步模式之生产者/消费者

1. 定义

要点

  • 与前面的保护性暂停中的 GuardObject 不同,不需要产生结果和消费结果的线程一一对应
  • 消费队列可以用来平衡生产和消费的线程资源
  • 生产者仅负责产生结果数据,不关心数据该如何处理,而消费者专心处理结果数据
  • 消息队列是有容量限制的,满时不会再加入数据,空时不会再消耗数据
  • JDK 中各种阻塞队列,采用的就是这种模式

2. 实现

消息类

//消息队列中存储的消息实体类
final class Message 
{
    private int id;
    private Object message;

    public Message(int id, Object message) 
    {
        this.id = id;
        this.message = message;
    }

    public int getId() {
        return id;
    }

    public Object getMessage() {
        return message;
    }
}

消息队列

package producerAndCustomer;

import lombok.extern.slf4j.Slf4j;

import java.util.LinkedList;

//消息队列
@Slf4j
class MessageQueue {
 //存放消息的双向链表队列
    private LinkedList<Message> queue;
 //队列的容量
    private int capacity;

    public MessageQueue(int capacity) {
        this.capacity = capacity;
        queue = new LinkedList<>();
    }

    public Message take() {
        synchronized (queue) {
            //如果当前队列没有消息,就让当前线程进入休眠状态
            while (queue.isEmpty()) {
                log.debug("没货了, wait");
                try {
                    //当有线程往队列中放入消息的时候,会唤醒在等待中的消费者
                    queue.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            //有剩余的消息,消费者进行消费
            Message message = queue.removeFirst();
            //消费完后,唤醒所有正在睡眠中的生产者
            queue.notifyAll();
            return message;
        }
    }

    public void put(Message message) {
        synchronized (queue) {
            //如果队列满了
            while (queue.size() == capacity) {
                log.debug("库存已达上限, wait");
                try {
                    //当前线程进入等待状态
                    queue.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            //队列没满,往队列中放入消息
            queue.addLast(message);
            //唤醒在睡眠中的消费者,告诉他们来消息了
            queue.notifyAll();
        }
    }
}

应用

package producerAndCustomer;

import lombok.extern.slf4j.Slf4j;

@Slf4j
public class Main {
    public static void main(String[] args) {
        //消息队列的最大容量为2
        MessageQueue messageQueue = new MessageQueue(2);
        //三个生产者
        for (int i = 0; i < 3; i++) {
            int id = i;
            new Thread(() -> {
                messageQueue.put(new Message(id, "大忽悠" + id + "号"));
                  System.out.println("生产者生产消息");
            }, "线程" + i).start();
        }
        //消费者不断消费消息
        new Thread(() ->
        {
            while (true) {
                try {
                    Thread.sleep(1);
                    //消费者消费消息
                    Message take = messageQueue.take();
                    System.out.println("消费的消息为: " + take.getMessage());
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }).start();
    }
}

执行到最后,还有一个消费者线程处于休息室中,因此程序并没有结束,但是主线程和三个生产者线程已经执行结束了

Park & Unpark

基本使用

它们是 LockSupport 类中的方法

// 暂停当前线程
LockSupport.park(); 
// 恢复某个线程的运行
LockSupport.unpark(暂停线程对象)

先 park 再 unpark

@Slf4j
public class Main {
    public static void main(String[] args) throws InterruptedException {
        Thread t1 = new Thread(() -> {
            log.debug("start...");
            try {
                sleep(1);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            log.debug("park...");
            LockSupport.park();
            log.debug("resume...");
        }, "t1");
        t1.start();
        sleep(2);
        log.debug("unpark...");
        LockSupport.unpark(t1);
    }
}

输出

18:42:52.585 c.TestParkUnpark [t1] - start... 
18:42:53.589 c.TestParkUnpark [t1] - park... 
18:42:54.583 c.TestParkUnpark [main] - unpark... 
18:42:54.583 c.TestParkUnpark [t1] - resume...

先 unpark 再 park

Thread t1 = new Thread(() -> {
 log.debug("start...");
 sleep(2);
 log.debug("park...");
 LockSupport.park();
 log.debug("resume...");
}, "t1");
t1.start();
sleep(1);
log.debug("unpark...");
LockSupport.unpark(t1);

输出

18:43:50.765 c.TestParkUnpark [t1] - start... 
18:43:51.764 c.TestParkUnpark [main] - unpark... 
18:43:52.769 c.TestParkUnpark [t1] - park... 
18:43:52.769 c.TestParkUnpark [t1] - resume...

特点

与 Object 的 wait & notify 相比

  • wait,notify 和 notifyAll 必须配合 Object Monitor 一起使用,而 park,unpark 不必
  • park & unpark 是以线程为单位来【阻塞】和【唤醒】线程,而 notify 只能随机唤醒一个等待线程,notifyAll
    是唤醒所有等待线程,就不那么【精确】
  • park & unpark 可以先 unpark,而 wait & notify 不能先 notify再wait

原理之 park & unpark

每个线程都有自己的一个 Parker 对象,由三部分组成 _counter , _cond_mutex 打个比喻

  • 线程就像一个旅人,Parker 就像他随身携带的背包,条件变量就好比背包中的帐篷。_counter 就好比背包中 的备用干粮(0为耗尽,1 为充足)
  • 调用 park 就是要看需不需要停下来歇息
  • 如果备用干粮耗尽,那么钻进帐篷歇息
  • 如果备用干粮充足,那么不需停留,继续前进
  • 调用 unpark,就好比令干粮充足
  • 如果这时线程还在帐篷,就唤醒让他继续前进
  • 如果这时线程还在运行,那么下次他调用 park 时,仅是消耗掉备用干粮,不需停留继续前进
  • 因为背包空间有限,多次调用 unpark 仅会补充一份备用干粮

park方法调用过程解析

  1. 当前线程调用 Unsafe.park() 方法---->看看需不需要休息
  2. 检查 _counter ,本情况为 0,这时,获得 _mutex 互斥锁----->干粮没了,休息
  3. 线程进入 _cond 条件变量阻塞----->进入帐篷休息
  4. 设置 _counter = 0---->标记干粮被耗尽了

先调用park再调用unpark

  1. 调用 Unsafe.unpark(Thread_0) 方法,设置 _counter 为 1---->补充干粮
  2. 唤醒 _cond 条件变量中的 Thread_0----->唤醒休息的人,继续上路
  3. Thread_0 恢复运行----->继续上路
  4. 设置 _counter 为 0---->上路会消耗体力,需要靠干粮补充

先调用unpark再调用park

  1. 调用 Unsafe.unpark(Thread_0) 方法,设置 _counter 为 1 ----->补充干粮先
  2. 当前线程调用 Unsafe.park() 方法----->行人累了,想要休息
  3. 检查 _counter ,本情况为 1,这时线程无需阻塞,继续运行---->发现干粮还有,就吃了干粮补充体力,所以不需要休息了
  4. 设置 _counter 为 0----->干粮吃完了,设置标记

重新理解线程状态转换

假设有线程 Thread t

  • 情况 1 NEW --> RUNNABLE

当调用 t.start() 方法时,由 NEW --> RUNNABLE

  • 情况 2 RUNNABLE <--> WAITING

t 线程用 synchronized(obj) 获取了对象锁后

  • 调用 obj.wait() 方法时,t 线程从 RUNNABLE --> WAITING
  • 调用 obj.notify() , obj.notifyAll() , t.interrupt() 时
    竞争锁成功,t 线程从 WAITING --> RUNNABLE
    竞争锁失败,t 线程从 WAITING --> BLOCKED

|

package park;

import lombok.extern.slf4j.Slf4j;

import static java.lang.Thread.sleep;

@Slf4j
public class Main {

    final static Object obj = new Object();

    public static void main(String[] args) throws InterruptedException {
        new Thread(() -> {
            synchronized (obj) {
                log.debug("执行....");
                try {
                    obj.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.debug("其它代码...."); // 断点
            }
        }, "t1").start();
        new Thread(() -> {
            synchronized (obj) {
                log.debug("执行....");
                try {
                    obj.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                log.debug("其它代码...."); // 断点
            }
        }, "t2").start();

        sleep((long) 0.5);
        log.debug("唤醒 obj 上其它线程");
        synchronized (obj) {
            obj.notify(); // 随机唤醒obj上一个等待线程 断点
            System.out.println("123");
        }
    }
}
  • 情况 3 RUNNABLE <--> WAITING

当前线程调用 t.join() 方法时,当前线程从 RUNNABLE --> WAITING

注意是当前线程在t 线程对象的监视器上等待

t 线程运行结束,或调用了当前线程的 interrupt() 时,当前线程从 WAITING --> RUNNABLE

  • 情况 4 RUNNABLE <--> WAITING

当前线程调用 LockSupport.park() 方法会让当前线程从 RUNNABLE --> WAITING

调用 LockSupport.unpark(目标线程) 或调用了线程 的 interrupt() ,会让目标线程从 WAITING --> RUNNABLE

  • 情况 5 RUNNABLE <--> TIMED_WAITING

t 线程用 synchronized(obj) 获取了对象锁后

调用 obj.wait(long n) 方法时,t 线程从 RUNNABLE --> TIMED_WAITING

t 线程等待时间超过了 n 毫秒,或调用 obj.notify() , obj.notifyAll() , t.interrupt()

竞争锁成功,t 线程从 TIMED_WAITING --> RUNNABLE

竞争锁失败,t 线程从 TIMED_WAITING --> BLOCKED

  • 情况 6 RUNNABLE <--> TIMED_WAITING

当前线程调用 t.join(long n) 方法时,当前线程从 RUNNABLE --> TIMED_WAITING

注意是当前线程在t 线程对象的监视器上等待

当前线程等待时间超过了 n 毫秒,或t 线程运行结束,或调用了当前线程的 interrupt() 时,当前线程从
TIMED_WAITING --> RUNNABLE

  • 情况 7 RUNNABLE <--> TIMED_WAITING

当前线程调用 Thread.sleep(long n) ,当前线程从 RUNNABLE --> TIMED_WAITING

当前线程等待时间超过了 n 毫秒,当前线程从 TIMED_WAITING --> RUNNABLE

  • 情况 8 RUNNABLE <--> TIMED_WAITING

当前线程调用 LockSupport.parkNanos(long nanos)LockSupport.parkUntil(long millis) 时,当前线
程从 RUNNABLE --> TIMED_WAITING

调用 LockSupport.unpark(目标线程) 或调用了线程 的 interrupt() ,或是等待超时,会让目标线程从
TIMED_WAITING--> RUNNABLE

  • 情况 9 RUNNABLE <--> BLOCKED

t 线程用 synchronized(obj) 获取了对象锁时如果竞争失败,从 RUNNABLE --> BLOCKED

持 obj 锁线程的同步代码块执行完毕,会唤醒该对象上所有 BLOCKED 的线程重新竞争,如果其中 t 线程竞争
成功,从 BLOCKED --> RUNNABLE ,其它失败的线程仍然 BLOCKED

  • 情况 10 RUNNABLE <--> TERMINATED

当前线程所有代码运行完毕,进入 TERMINATED

多把锁

多把不相干的锁

一间大屋子有两个功能:睡觉、学习,互不相干。

现在小南要学习,小女要睡觉,但如果只用一间屋子(一个对象锁)的话,那么并发度很低

解决方法是准备多个房间(多个对象锁)

例如

@Slf4j
class BigRoom {
    public void sleep() throws InterruptedException {
        synchronized (this) {
            log.debug("sleeping 2 小时");
            Thread.sleep(2);
        }
    }
    public void study() throws InterruptedException {
        synchronized (this) {
            log.debug("study 1 小时");
            Thread.sleep(1);
        }
    }
}

执行

BigRoom bigRoom = new BigRoom();
        new Thread(() -> {
            try {
                bigRoom.study();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        },"小南").start();
        new Thread(() -> {
            try {
                bigRoom.sleep();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        },"小女").start();

某次结果

12:13:54.471 [小南] c.BigRoom - study 1 小时
12:13:55.476 [小女] c.BigRoom - sleeping 2 小时

显然小南的行为就属于站着茅坑不拉屎

因此书房的锁和卧室的锁,肯定不能是同一把锁

改进

@Slf4j
class BigRoom {

    private final Object studyRoom = new Object();
    private final Object bedRoom = new Object();

    public void sleep() throws InterruptedException {
        synchronized (bedRoom) {
            log.debug("sleeping 2 小时");
            Thread.sleep(2);
        }
    }
    public void study() throws InterruptedException {
        synchronized (studyRoom) {
            log.debug("study 1 小时");
            Thread.sleep(1);
        }
    }
}

某次执行结果

12:15:35.069 [小南] c.BigRoom - study 1 小时
12:15:35.069 [小女] c.BigRoom - sleeping 2 小时

将锁的粒度细分

  • 好处,是可以增强并发度
  • 坏处,如果一个线程需要同时获得多把锁,就容易发生死锁

活跃性

死锁

有这样的情况:一个线程需要同时获取多把锁,这时就容易发生死锁

t1 线程 获得 A对象 锁,接下来想获取 B对象 的锁 ,t2 线程 获得 B对象 锁,接下来想获取 A对象 的锁

例:

package park;

import lombok.extern.slf4j.Slf4j;

import static java.lang.Thread.sleep;

@Slf4j
public class Main {
    public static void main(String[] args) throws InterruptedException
    {
        Object A = new Object();
        Object B = new Object();
        Thread t1 = new Thread(() -> {
            synchronized (A) {
                log.debug("lock A");
                try {
                    sleep(1);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                synchronized (B) {
                    log.debug("lock B");
                    log.debug("操作...");
                }
            }
        }, "t1");
        Thread t2 = new Thread(() -> {
            synchronized (B) {
                log.debug("lock B");
                try {
                    sleep((long) 0.5);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                synchronized (A) {
                    log.debug("lock A");
                    log.debug("操作...");
                }
            }
        }, "t2");
        t1.start();
        t2.start();
    }
}

结果

12:22:06.962 [t2] c.TestDeadLock - lock B 
12:22:06.962 [t1] c.TestDeadLock - lock A

定位死锁

  • 检测死锁可以使用 **jconsole**工具,或者使用 jps 定位进程 id,再用 jstack 定位死锁
cmd > jps
Picked up JAVA_TOOL_OPTIONS: -Dfile.encoding=UTF-8
12320 Jps
22816 KotlinCompileDaemon
33200 TestDeadLock // JVM 进程
11508 Main
28468 Launcher
cmd > jstack 33200
Picked up JAVA_TOOL_OPTIONS: -Dfile.encoding=UTF-8
2018-12-29 05:51:40
Full thread dump Java HotSpot(TM) 64-Bit Server VM (25.91-b14 mixed mode):
"DestroyJavaVM" #13 prio=5 os_prio=0 tid=0x0000000003525000 nid=0x2f60 waiting on condition 
[0x0000000000000000]
 java.lang.Thread.State: RUNNABLE
"Thread-1" #12 prio=5 os_prio=0 tid=0x000000001eb69000 nid=0xd40 waiting for monitor entry 
[0x000000001f54f000]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at thread.TestDeadLock.lambda$main$1(TestDeadLock.java:28)
 - waiting to lock <0x000000076b5bf1c0> (a java.lang.Object)
 - locked <0x000000076b5bf1d0> (a java.lang.Object)
 at thread.TestDeadLock$$Lambda$2/883049899.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:745)
"Thread-0" #11 prio=5 os_prio=0 tid=0x000000001eb68800 nid=0x1b28 waiting for monitor entry 
[0x000000001f44f000]
 java.lang.Thread.State: BLOCKED (on object monitor)
 at thread.TestDeadLock.lambda$main$0(TestDeadLock.java:15)
 - waiting to lock <0x000000076b5bf1d0> (a java.lang.Object)
- locked <0x000000076b5bf1c0> (a java.lang.Object)
 at thread.TestDeadLock$$Lambda$1/495053715.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:745)
 
// 略去部分输出
Found one Java-level deadlock:
=============================
"Thread-1":
 waiting to lock monitor 0x000000000361d378 (object 0x000000076b5bf1c0, a java.lang.Object),
 which is held by "Thread-0"
"Thread-0":
 waiting to lock monitor 0x000000000361e768 (object 0x000000076b5bf1d0, a java.lang.Object),
 which is held by "Thread-1"
Java stack information for the threads listed above:
===================================================
"Thread-1":
 at thread.TestDeadLock.lambda$main$1(TestDeadLock.java:28)
 - waiting to lock <0x000000076b5bf1c0> (a java.lang.Object)
 - locked <0x000000076b5bf1d0> (a java.lang.Object)
 at thread.TestDeadLock$$Lambda$2/883049899.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:745)
"Thread-0":
 at thread.TestDeadLock.lambda$main$0(TestDeadLock.java:15)
 - waiting to lock <0x000000076b5bf1d0> (a java.lang.Object)
 - locked <0x000000076b5bf1c0> (a java.lang.Object)
 at thread.TestDeadLock$$Lambda$1/495053715.run(Unknown Source)
 at java.lang.Thread.run(Thread.java:745)
Found 1 deadlock.
  • 避免死锁要注意加锁顺序
  • 另外如果由于某个线程进入了死循环,导致其它线程一直等待,对于这种情况 linux 下可以通过 top 先定位到
    CPU 占用高的 Java 进程,再利用 top -Hp 进程id 来定位是哪个线程,最后再用 jstack 排查

哲学家就餐问题

有五位哲学家,围坐在圆桌旁。

  • 他们只做两件事,思考和吃饭,思考一会吃口饭,吃完饭后接着思考。
  • 吃饭时要用两根筷子吃,桌上共有 5 根筷子,每位哲学家左右手边各有一根筷子。
  • 如果筷子被身边的人拿着,自己就得等待

筷子类

package park;

class Chopstick 
{

   String name;

   public Chopstick(String name) {
  this.name = name;
 }

   @Override
   public String toString() {
  return "筷子{" + name + '}';
 }

}

哲学家类

package park;

import lombok.extern.slf4j.Slf4j;

@Slf4j
class Philosopher extends Thread {
    Chopstick left;
    Chopstick right;

    public Philosopher(String name, Chopstick left, Chopstick right) {
        super(name);
        this.left = left;
        this.right = right;
    }

    private void eat() {
        log.debug("eating...");
        try {
            Thread.sleep(1);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    @Override
    public void run() {
        while (true) {
            // 获得左手筷子
            synchronized (left) {
                // 获得右手筷子
                synchronized (right) {
                    // 吃饭
                    eat();
                }
                // 放下右手筷子
            }
            // 放下左手筷子
        }
    }
}

就餐

Chopstick c1 = new Chopstick("1");
Chopstick c2 = new Chopstick("2");
Chopstick c3 = new Chopstick("3");
Chopstick c4 = new Chopstick("4");
Chopstick c5 = new Chopstick("5");
new Philosopher("苏格拉底", c1, c2).start();
new Philosopher("柏拉图", c2, c3).start();
new Philosopher("亚里士多德", c3, c4).start();
new Philosopher("赫拉克利特", c4, c5).start();
new Philosopher("阿基米德", c5, c1).start();

执行不多会,就执行不下去了

12:33:15.575 [苏格拉底] c.Philosopher - eating... 
12:33:15.575 [亚里士多德] c.Philosopher - eating... 
12:33:16.580 [阿基米德] c.Philosopher - eating... 
12:33:17.580 [阿基米德] c.Philosopher - eating... 
// 卡在这里, 不向下运行

使用 jconsole 检测死锁,发现

-------------------------------------------------------------------------
名称: 阿基米德
状态: cn.itcast.Chopstick@1540e19d (筷子1) 上的BLOCKED, 拥有者: 苏格拉底
总阻止数: 2, 总等待数: 1
堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
 - 已锁定 cn.itcast.Chopstick@6d6f6e28 (筷子5)
-------------------------------------------------------------------------
名称: 苏格拉底
状态: cn.itcast.Chopstick@677327b6 (筷子2) 上的BLOCKED, 拥有者: 柏拉图
总阻止数: 2, 总等待数: 1
堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
 - 已锁定 cn.itcast.Chopstick@1540e19d (筷子1)
-------------------------------------------------------------------------
名称: 柏拉图
状态: cn.itcast.Chopstick@14ae5a5 (筷子3) 上的BLOCKED, 拥有者: 亚里士多德
总阻止数: 2, 总等待数: 0
堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
 - 已锁定 cn.itcast.Chopstick@677327b6 (筷子2)
-------------------------------------------------------------------------
名称: 亚里士多德
状态: cn.itcast.Chopstick@7f31245a (筷子4) 上的BLOCKED, 拥有者: 赫拉克利特
总阻止数: 1, 总等待数: 1
堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
 - 已锁定 cn.itcast.Chopstick@14ae5a5 (筷子3)
-------------------------------------------------------------------------
名称: 赫拉克利特
状态: cn.itcast.Chopstick@6d6f6e28 (筷子5) 上的BLOCKED, 拥有者: 阿基米德
总阻止数: 2, 总等待数: 0
堆栈跟踪:
cn.itcast.Philosopher.run(TestDinner.java:48)
 - 已锁定 cn.itcast.Chopstick@7f31245a (筷子4)

这种线程没有按预期结束,执行不下去的情况,归类为【活跃性】问题,除了死锁以外,还有活锁和饥饿者两种情

活锁

活锁出现在两个线程互相改变对方的结束条件,最后谁也无法结束,例如

package park;

import lombok.extern.slf4j.Slf4j;

import static java.lang.Thread.sleep;

@Slf4j
public class TestLiveLock {
 static volatile int count = 10;
 static final Object lock = new Object();

 public static void main(String[] args) {
  new Thread(() -> {
   // 期望减到 0 退出循环
   while (count > 0) {
    try {
     sleep((long) 0.2);
    } catch (InterruptedException e) {
     e.printStackTrace();
    }
    count--;
    log.debug("count: {}", count);
   }
  }, "t1").start();
  
  new Thread(() -> {
   // 期望超过 20 退出循环
   while (count < 20) {
    try {
     sleep((long) 0.2);
    } catch (InterruptedException e) {
     e.printStackTrace();
    }
    count++;
    log.debug("count: {}", count);
   }
  }, "t2").start();
 }
}

上面代码中两个线程并行对一个变量count,同时做加加和减减操作,导致退出条件总是无法满足,造成活锁现象

饥饿

很多教程中把饥饿定义为,一个线程由于优先级太低,始终得不到 CPU 调度执行,也不能够结束,饥饿的情况不
易演示,讲读写锁时会涉及饥饿问题

顺序加锁的方式解决之前的死锁问题

顺序加锁的方式解决之前的死锁问题

顺序加锁的解决方案

ReentrantLock

相对于 synchronized 它具备如下特点

  • 可中断
  • 可以设置超时时间
  • 可以设置为公平锁(先进先出,可以用来解决饥饿问题)
  • 支持多个条件变量(有多个waitset,这样可以避免虚假唤醒的问题)

与 synchronized 一样,都支持可重入(当前线程对同一个对象反复加锁)

基本语法

// 获取锁
reentrantLock.lock();
try {
 // 临界区
} finally {
 // 释放锁
 reentrantLock.unlock();
}

这里reentrantLock.lock();这行代码写在try…catch语句块里面,也没事,一般习惯写外面

可重入

可重入是指同一个线程如果首次获得了这把锁,那么因为它是这把锁的拥有者,因此有权利再次获取这把锁

如果是不可重入锁,那么第二次获得锁时,自己也会被锁挡住

@Slf4j
public class TestLiveLock {
    static ReentrantLock lock = new ReentrantLock();

    public static void main(String[] args) {
        method1();
    }

    public static void method1() {
        lock.lock();
        try {
            log.debug("execute method1");
            method2();
        } finally {
            lock.unlock();
        }
    }

    public static void method2() {
        lock.lock();
        try {
            log.debug("execute method2");
            method3();
        } finally {
            lock.unlock();
        }
    }

    public static void method3() {
        lock.lock();
        try {
            log.debug("execute method3");
        } finally {
            lock.unlock();
        }
    }
}

输出

17:59:11.862 [main] c.TestReentrant - execute method1 
17:59:11.865 [main] c.TestReentrant - execute method2 
17:59:11.865 [main] c.TestReentrant - execute method3

可打断

//表示当前线程是可打断的
    lock.lockInterruptibly();
    //lock()方法是不可以被打断的
        lock.lock();

复习: interrupt 打断

调用park方法也会阻塞住当前线程,打断 park 线程, 不会清空打断状态,即不会抛出异常
在打断标记为false的情况下,park()方法会阻塞当前线程;在打断标记为true的情况下,park()方法不会阻塞当前线程

package park;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.locks.ReentrantLock;

import static java.lang.Thread.sleep;

@Slf4j
public class TestLiveLock {
 static ReentrantLock lock = new ReentrantLock();

 public static void main(String[] args) {

  Thread t1 = new Thread(() -> {
   log.debug("启动...");
   try {
    //表示当前线程是可打断的
    lock.lockInterruptibly();
   } catch (InterruptedException e) {
    e.printStackTrace();
    log.debug("等锁的过程中被打断");
    return;
   }
   try {
    log.debug("获得了锁");
   } finally {
    lock.unlock();
   }
   
  }, "t1");

//主线程先拿到锁
  lock.lock();
  log.debug("获得了锁");
 //t1线程启动
  t1.start();

  try {
   sleep(1);
   //打断t1线程---此时t1还在阻塞中,等待获取锁
   t1.interrupt();
   log.debug("执行打断");
  } catch (InterruptedException e) {
   e.printStackTrace();
  } finally {
   lock.unlock();
  }
 }

}

输出

18:02:40.520 [main] c.TestInterrupt - 获得了锁
18:02:40.524 [t1] c.TestInterrupt - 启动... 
18:02:41.530 [main] c.TestInterrupt - 执行打断
java.lang.InterruptedException 
 at 
java.util.concurrent.locks.AbstractQueuedSynchronizer.doAcquireInterruptibly(AbstractQueuedSynchr
onizer.java:898) 
 at 
java.util.concurrent.locks.AbstractQueuedSynchronizer.acquireInterruptibly(AbstractQueuedSynchron
izer.java:1222) 
 at java.util.concurrent.locks.ReentrantLock.lockInterruptibly(ReentrantLock.java:335) 
 at cn.itcast.n4.reentrant.TestInterrupt.lambda$main$0(TestInterrupt.java:17) 
 at java.lang.Thread.run(Thread.java:748) 
18:02:41.532 [t1] c.TestInterrupt - 等锁的过程中被打断

注意如果是不可中断模式,那么即使使用了 interrupt 也不会让等待中断

打断

18:06:56.261 [main] c.TestInterrupt - 获得了锁
18:06:56.265 [t1] c.TestInterrupt - 启动... 
18:06:57.266 [main] c.TestInterrupt - 执行打断 // 这时 t1 并没有被真正打断, 而是仍继续等待锁
18:06:58.267 [main] c.TestInterrupt - 释放了锁
18:06:58.267 [t1] c.TestInterrupt - 获得了锁

锁超时

立刻失败

@Slf4j
public class TestLiveLock {
    static ReentrantLock lock = new ReentrantLock();

    public static void main(String[] args) 
    {
        Thread t1 = new Thread(() -> {
            log.debug("启动...");
            //tryLock()尝试去获取锁,如果获取不到,返回false
            if (!lock.tryLock()) {
                log.debug("获取立刻失败,返回");
                return;
            }
            try {
                log.debug("获得了锁");
            } finally {
                lock.unlock();
            }
        }, "t1");
        
        lock.lock();
        log.debug("获得了锁");
        t1.start();
        try {
            sleep(2);
        } catch (InterruptedException e) {
         e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

}

输出

18:15:02.918 [main] c.TestTimeout - 获得了锁
18:15:02.921 [t1] c.TestTimeout - 启动... 
18:15:02.921 [t1] c.TestTimeout - 获取立刻失败,返回

与lock和lockInterruptibly两个方法获取不到锁会阻塞不同,tryLock方法获取不到锁,会立马返回一个boolean值,表示是否获取到了锁

超时失败

package park;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

import static java.lang.Thread.sleep;

@Slf4j
public class TestLiveLock {
    static ReentrantLock lock = new ReentrantLock();

    public static void main(String[] args) {
        Thread t1 = new Thread(() -> {
            log.debug("启动...");
            try {
                if (!lock.tryLock(1, TimeUnit.SECONDS)) {
                    log.debug("获取等待 1s 后失败,返回");
                    return;
                }
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            try {
                log.debug("获得了锁");
            } finally {
                lock.unlock();
            }
        }, "t1");
        lock.lock();
        log.debug("获得了锁");
        t1.start();
        try {
            sleep(2);
        } catch (InterruptedException e) {
         e.printStackTrace();
        } finally {
            lock.unlock();
        }
    }

}

输出

18:19:40.537 [main] c.TestTimeout - 获得了锁
18:19:40.544 [t1] c.TestTimeout - 启动... 
18:19:41.547 [t1] c.TestTimeout - 获取等待 1s 后失败,返回

tryLock方法,如果加上等待时限限制,那么就表示,如果等待的最大时长中都没有获取到锁,就返回false,否则等待过程中一旦获得了锁,就立刻返回true
因为存在等待过程,因此可以被别的线程打断等待,因此会抛出打断异常

使用 tryLock 解决哲学家就餐问题

class Chopstick extends ReentrantLock {
 String name;

 public Chopstick(String name) {
  this.name = name;
 }

 @Override
 public String toString() {
  return "筷子{" + name + '}';
 }
}
package park;

import lombok.extern.slf4j.Slf4j;

@Slf4j
class Philosopher extends Thread {
    Chopstick left;
    Chopstick right;

    public Philosopher(String name, Chopstick left, Chopstick right) {
        super(name);
        this.left = left;
        this.right = right;
    }

    @Override
    public void run() {
        while (true) {
            // 尝试获得左手筷子
            if (left.tryLock()) {
                try {
                    // 尝试获得右手筷子
                    if (right.tryLock()) {
                        try {
                            eat();
                        } finally {
                            right.unlock();
                        }
                    }
                } finally {
                    left.unlock();
                }
            }
        }
    }

    private void eat() {
        log.debug("eating...");
     try {
      Thread.sleep(1);
     } catch (InterruptedException e) {
      e.printStackTrace();
     }
    }
}

上面解决哲学家吃饭的问题的思路是什么呢?

公平锁

ReentrantLock 默认是不公平的

这里的公平体现在。阻塞队列中的先进先出,即先进入阻塞队列的线程,等到锁释放,阻塞队列中的线程都被唤醒的时候,可以优先获得锁,而不是所有所有线程去竞争锁

package park;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.locks.ReentrantLock;

import static java.lang.Thread.sleep;

@Slf4j
public class Main {
//先设置为不公平
    private static ReentrantLock lock=new ReentrantLock(fasle);
    public static void main(String[] args) throws InterruptedException
    {
        lock.lock();
        for (int i = 0; i < 500; i++) {
            new Thread(() -> {
                lock.lock();
                try {
                    System.out.println(Thread.currentThread().getName() + " running...");
                } finally {
                    lock.unlock();
                }
            }, "t" + i).start();
        }
       // 1s 之后去争抢锁
        Thread.sleep(1000);
        new Thread(() -> {
            System.out.println(Thread.currentThread().getName() + " start...");
            lock.lock();
            try {
                System.out.println(Thread.currentThread().getName() + " running...");
            } finally {
                lock.unlock();
            }
        }, "强行插入").start();
        lock.unlock();
    }
}

强行插入,有机会在中间输出

注意:该实验不一定总能复现

t39 running... 
t40 running... 
t41 running... 
t42 running... 
t43 running... 
强行插入 start... 
强行插入 running... 
t44 running... 
t45 running... 
t46 running... 
t47 running... 
t49 running...

改为公平锁后

ReentrantLock lock = new ReentrantLock(true);

强行插入,总是在最后输出

t465 running... 
t464 running... 
t477 running... 
t442 running... 
t468 running... 
t493 running... 
t482 running... 
t485 running... 
t481 running... 
强行插入 running..

公平锁一般没有必要,会降低并发度,后面分析原理时会讲解

条件变量

synchronized 中也有条件变量,就是我们讲原理时那个 waitSet 休息室,当条件不满足时进入 waitSet 等待

ReentrantLock 的条件变量比 synchronized 强大之处在于,它是支持多个条件变量的,这就好比

  • synchronized 是那些不满足条件的线程都在一间休息室等消息
  • 而 ReentrantLock 支持多间休息室,有专门等烟的休息室、专门等早餐的休息室、唤醒时也是按休息室来唤 醒

使用要点:

  • await 前需要获得锁
  • await 执行后,会释放锁,进入 conditionObject 等待
  • await 的线程被唤醒(或打断、或超时)取重新竞争 lock 锁
  • 竞争 lock 锁成功后,从 await 后继续执行
  • 竞争lock锁失败,继续等待
    await参考wait就可以很容易理解了

例子:

package park;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

import static java.lang.Thread.sleep;

@Slf4j
public class Main {
    static ReentrantLock lock = new ReentrantLock();
    static Condition waitCigaretteQueue = lock.newCondition();
    static Condition waitbreakfastQueue = lock.newCondition();
    static volatile boolean hasCigrette = false;
    static volatile boolean hasBreakfast = false;

    public static void main(String[] args) throws InterruptedException {
        new Thread(() -> {
            try {
                lock.lock();
                while (!hasCigrette) {
                    try {
                        waitCigaretteQueue.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("等到了它的烟");
            } finally {
                lock.unlock();
            }
        }).start();

        new Thread(() -> {
            try {
                lock.lock();
                while (!hasBreakfast) {
                    try {
                        waitbreakfastQueue.await();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                log.debug("等到了它的早餐");
            } finally {
                lock.unlock();
            }
        }).start();
        sleep(1);
        sendBreakfast();
        sleep(1);
        sendCigarette();
    }

    private static void sendCigarette() {
        lock.lock();
        try {
            log.debug("送烟来了");
            hasCigrette = true;
            waitCigaretteQueue.signal();
        } finally {
            lock.unlock();
        }
    }

    private static void sendBreakfast() {
        lock.lock();
        try {
            log.debug("送早餐来了");
            hasBreakfast = true;
            waitbreakfastQueue.signal();
        } finally {
            lock.unlock();
        }
    }
}

输出

18:52:27.680 [main] c.TestCondition - 送早餐来了
18:52:27.682 [Thread-1] c.TestCondition - 等到了它的早餐
18:52:28.683 [main] c.TestCondition - 送烟来了
18:52:28.683 [Thread-0] c.TestCondition - 等到了它的烟

同步模式之顺序控制

1. 固定运行顺序

比如,必须先 2 后 1 打印

wait notify 版

package park;

import lombok.extern.slf4j.Slf4j;

@Slf4j
public class Main {

    // 用来同步的对象
    static Object obj = new Object();
    // t2 运行标记, 代表 t2 是否执行过
    static boolean t2runed = false;

    public static void main(String[] args) throws InterruptedException
    {
      //确保t2在t1之前运行
        new Thread(()->{
            synchronized (obj)
            {
                //t2还没有执行
                while (!t2runed)
                {
                    try {
                        //去休息室等着
                        obj.wait();
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
                System.out.println("t1执行");
            }
        },"t1").start();

      new Thread(()->{
          synchronized (obj)
          {
              System.out.println("t2执行");
              //修改运行标记
              t2runed=true;
              // 通知 obj 上等待的线程(可能有多个,因此需要用 notifyAll)
              obj.notifyAll();
          }
      },"t2").start();
    }

}

Park Unpark 版

可以看到,实现上很麻烦:

  • 首先,需要保证先 wait 再 notify,否则 wait 线程永远得不到唤醒。因此使用了『运行标记』来判断该不该 wait
  • 第二,如果有些干扰线程错误地 notify 了 wait 线程,条件不满足时还要重新等待,使用了 while 循环来解决 此问题
  • 最后,唤醒对象上的 wait 线程需要使用 notifyAll,因为『同步对象』上的等待线程可能不止一个
  • 可以使用 LockSupport 类的 park 和 unpark 来简化上面的题目:
package park;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.locks.LockSupport;

@Slf4j
public class Main {
    public static void main(String[] args) throws InterruptedException
    {
        Thread t1 = new Thread(() -> {
            try { Thread.sleep(1000); } catch (InterruptedException e) { }
            // 当没有『许可』时,当前线程暂停运行;有『许可』时,用掉这个『许可』,当前线程恢复运行
            LockSupport.park();
            System.out.println("1");
        });
        Thread t2 = new Thread(() -> {
            System.out.println("2");
            // 给线程 t1 发放『许可』(多次连续调用 unpark 只会发放一个『许可』)
            LockSupport.unpark(t1);
        });
        t1.start();
        t2.start();
    }

}

park 和 unpark 方法比较灵活,他俩谁先调用,谁后调用无所谓。并且是以线程为单位进行『暂停』和『恢复』,
不需要『同步对象』和『运行标记』

交替输出

线程 1 输出 a 5 次,线程 2 输出 b 5 次,线程 3 输出 c 5 次。现在要求输出 abcabcabcabcabc 怎么实现

wait notify 版

package park;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.locks.LockSupport;

@Slf4j
public class Main {
    public static void main(String[] args) throws InterruptedException
    {
        SyncWaitNotify syncWaitNotify = new SyncWaitNotify(1, 5);
        new Thread(() -> {
            try {
                syncWaitNotify.print(1, 2, "a");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }).start();
        new Thread(() -> {
            try {
                syncWaitNotify.print(2, 3, "b");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }).start();
        new Thread(() -> {
            try {
                syncWaitNotify.print(3, 1, "c");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }).start();
    }

}

/* 输出顺序:abcabcabc 线程名字 输出 下一个输出 对应数字 下一个数字 * 线程a a b 0 1 * 线程b b c 1 2 线程c c a 2 0 * * */
class SyncWaitNotify
{
    //记录当前是应该是线程在执行方法
    private Integer flag;
    //循环次数
    private Integer loopNum;

    public SyncWaitNotify(Integer flag, Integer loopNum) {
        this.flag = flag;
        this.loopNum = loopNum;
    }

    //输出方法
    public void print(Integer curNum, Integer nextNum,String str) throws InterruptedException {
       //当前线程需要循环打印几次
        for(int i=0;i<loopNum;i++)
        {
            synchronized (this)
            {
                //如果与预期执行的线程不一致,就让当前线程先休息,释放锁
                while(flag!=curNum)
                {
                    this.wait();
                }
                //与预期一致了
                System.out.print(str);
                //设置下一个预期线程
                this.flag=nextNum;
                //唤醒等待中的线程
                this.notifyAll();
            }
        }
    }
}

await&signal版本----Lock 条件变量版

abc线程----->一开始都进休息室休息—>主线程唤醒a线程,a先执行,拿到锁---->a线程执行,唤醒b,然后释放锁,下一次循环,如果没得到锁,就阻塞等待,得到了往下执行,还是先进休息室—>b执行完,唤醒c,和a一样流程---->c执行完,唤醒a,同上

package park;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.LockSupport;
import java.util.concurrent.locks.ReentrantLock;

@Slf4j
public class Main {
    public static void main(String[] args) throws InterruptedException
    {
        AwaitSignal as = new AwaitSignal(5);
        Condition aWaitSet = as.newCondition();
        Condition bWaitSet = as.newCondition();
        Condition cWaitSet = as.newCondition();
        new Thread(() -> {
            as.print("a", aWaitSet, bWaitSet);
        }).start();
        new Thread(() -> {
            as.print("b", bWaitSet, cWaitSet);
        }).start();
        new Thread(() -> {
            as.print("c", cWaitSet, aWaitSet);
        }).start();
        as.start(aWaitSet);
    }
}

class AwaitSignal extends ReentrantLock
{
    //循环次数
    private Integer loopNumber;

    public AwaitSignal(int loopNumber) {
        this.loopNumber = loopNumber;
    }

    public void start(Condition first) {
        this.lock();
        try {
            System.out.println("start....");
            //唤醒第一个
            first.signal();
        } finally {
            this.unlock();
        }
    }

    public void print(String str, Condition current, Condition next) {
        for (int i = 0; i < loopNumber; i++) {
            this.lock();
            try {
                current.await();
                System.out.print(str);
                next.signal();
            } catch (InterruptedException e) {
                e.printStackTrace();
            } finally {
                this.unlock();
            }
        }
    }

}

注意:
该实现没有考虑 a,b,c 线程都就绪再开始

Park Unpark 版

package park;

import lombok.extern.slf4j.Slf4j;

import java.util.concurrent.locks.LockSupport;

@Slf4j
public class Main {
    public static void main(String[] args) throws InterruptedException
    {
        SyncPark syncPark = new SyncPark(5);
        Thread t1 = new Thread(() -> {
            syncPark.print("a");
        });
        Thread t2 = new Thread(() -> {
            syncPark.print("b");
        });
        Thread t3 = new Thread(() -> {
            syncPark.print("c\n");
        });
        syncPark.setThreads(t1, t2, t3);
        syncPark.start();
    }
}

class SyncPark {
    private int loopNumber;
    private Thread[] threads;
    public SyncPark(int loopNumber) {
        this.loopNumber = loopNumber;
    }
    public void setThreads(Thread... threads) {
        this.threads = threads;
    }
    public void print(String str) {
        for (int i = 0; i < loopNumber; i++) {
            LockSupport.park();
            System.out.print(str);
            LockSupport.unpark(nextThread());
        }
    }
    private Thread nextThread() {
        Thread current = Thread.currentThread();
        int index = 0;
        for (int i = 0; i < threads.length; i++) {
            if(threads[i] == current) {
                index = i;
                break;
            }
        }
        if(index < threads.length - 1) {
            return threads[index+1];
        } else {
            return threads[0];
        }
    }
    public void start() {
        for (Thread thread : threads) {
            thread.start();
        }
        LockSupport.unpark(threads[0]);
    }
}

本章小结

本章我们需要重点掌握的是

  • 分析多线程访问共享资源时,哪些代码片段属于临界区

  • 使用 synchronized 互斥解决临界区的线程安全问题
    掌握 synchronized 锁对象语法
    掌握 synchronzied 加载成员方法和静态方法语法
    掌握 wait/notify同步方法

  • 使用 lock 互斥解决临界区的线程安全问题
    掌握 lock 的使用细节:可打断、锁超时、公平锁、条件变量

学会分析变量的线程安全性、掌握常见线程安全类的使用

  • 了解线程活跃性问题:死锁、活锁、饥饿

  • 应用方面
    互斥:使用 synchronized 或 Lock 达到共享资源互斥效果
    同步:使用 wait/notify 或 Lock的条件变量来达到线程间通信效果

  • 原理方面
    monitor、synchronized 、wait/notify 原理
    synchronized 进阶原理
    park & unpark原理

  • 模式方面
    同步模式之保护性暂停
    异步模式之生产者消费者
    同步模式之顺序控制

相关文章