本文整理了Java中no.uib.cipr.matrix.Vector.scale()
方法的一些代码示例,展示了Vector.scale()
的具体用法。这些代码示例主要来源于Github
/Stackoverflow
/Maven
等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Vector.scale()
方法的具体详情如下:
包路径:no.uib.cipr.matrix.Vector
类名称:Vector
方法名:scale
[英]x=alpha*x
[中]
代码示例来源:origin: gov.sandia.foundry/gov-sandia-cognition-common-core
@Override
public void scaleEquals(
final double scaleFactor)
{
this.internalVector.scale( scaleFactor );
}
代码示例来源:origin: algorithmfoundry/Foundry
@Override
public void scaleEquals(
final double scaleFactor)
{
this.internalVector.scale( scaleFactor );
}
代码示例来源:origin: algorithmfoundry/Foundry
@Override
public void scaleEquals(
final double scaleFactor)
{
this.internalVector.scale( scaleFactor );
}
代码示例来源:origin: de.tudarmstadt.ukp.similarity.algorithms/de.tudarmstadt.ukp.similarity.algorithms.vsm-asl
@Override
public Vector get()
{
return super.get().scale(1./count);
}
代码示例来源:origin: org.dkpro.similarity/dkpro-similarity-algorithms-vsm-asl
private void normalize(Vector scv)
{
double norm = normalizationMode.apply(scv);
if (norm == 0.0) {
return;
}
scv.scale(1 / norm);
}
代码示例来源:origin: dkpro/dkpro-similarity
@Override
public Vector get()
{
return super.get().scale(1./count);
}
代码示例来源:origin: de.tudarmstadt.ukp.similarity.algorithms/de.tudarmstadt.ukp.similarity.algorithms.vsm-asl
private void normalize(Vector scv)
{
double norm = normalizationMode.apply(scv);
if (norm == 0.0) {
return;
}
scv.scale(1 / norm);
}
代码示例来源:origin: org.dkpro.similarity/dkpro-similarity-algorithms-vsm-asl
@Override
public Vector get()
{
return super.get().scale(1./count);
}
代码示例来源:origin: dkpro/dkpro-similarity
private void normalize(Vector scv)
{
double norm = normalizationMode.apply(scv);
if (norm == 0.0) {
return;
}
scv.scale(1 / norm);
}
代码示例来源:origin: fommil/matrix-toolkits-java
@Override
public Vector multAdd(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.multAdd(alpha, x, y);
checkMultAdd(x, y);
double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y)
.getData();
// y = 1/alpha * y
y.scale(1 / alpha);
// y = A*x + y
for (int i = 0; i < numColumns; ++i)
for (int j = columnPointer[i]; j < columnPointer[i + 1]; ++j)
yd[rowIndex[j]] += data[j] * xd[i];
// y = alpha*y = alpha*A*x + y
return y.scale(alpha);
}
代码示例来源:origin: com.googlecode.matrix-toolkits-java/mtj
@Override
public Vector transMultAdd(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.transMultAdd(alpha, x, y);
checkTransMultAdd(x, y);
double[] xd = ((DenseVector) x).getData();
double[] yd = ((DenseVector) y).getData();
// y = 1/alpha * y
y.scale(1. / alpha);
// y = A'x + y
for (int i = 0; i < numRows; ++i)
for (int j = rowPointer[i]; j < rowPointer[i + 1]; ++j)
yd[columnIndex[j]] += data[j] * xd[i];
// y = alpha*y = alpha*A'x + y
return y.scale(alpha);
}
代码示例来源:origin: fommil/matrix-toolkits-java
@Override
public Vector transMultAdd(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.transMultAdd(alpha, x, y);
checkTransMultAdd(x, y);
double[] xd = ((DenseVector) x).getData();
double[] yd = ((DenseVector) y).getData();
// y = 1/alpha * y
y.scale(1. / alpha);
// y = A'x + y
for (int i = 0; i < numRows; ++i)
for (int j = rowPointer[i]; j < rowPointer[i + 1]; ++j)
yd[columnIndex[j]] += data[j] * xd[i];
// y = alpha*y = alpha*A'x + y
return y.scale(alpha);
}
代码示例来源:origin: com.googlecode.matrix-toolkits-java/mtj
@Override
public Vector multAdd(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.multAdd(alpha, x, y);
checkMultAdd(x, y);
double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y)
.getData();
// y = 1/alpha * y
y.scale(1 / alpha);
// y = A*x + y
for (int i = 0; i < numColumns; ++i)
for (int j = columnPointer[i]; j < columnPointer[i + 1]; ++j)
yd[rowIndex[j]] += data[j] * xd[i];
// y = alpha*y = alpha*A*x + y
return y.scale(alpha);
}
代码示例来源:origin: openimaj/openimaj
private Vector project(Vector v, Vector u){
return u.copy().scale((v.dot(u) / u.dot(u)));
}
代码示例来源:origin: com.googlecode.matrix-toolkits-java/mtj
@Override
public Vector transMultAdd(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.transMultAdd(alpha, x, y);
checkTransMultAdd(x, y);
double[] xd = ((DenseVector) x).getData(), yd = ((DenseVector) y)
.getData();
// y = 1/alpha * y
y.scale(1. / alpha);
// y = A'x + y
for (int i = 0; i < numRows; ++i) {
SparseVector v = rowD[i];
int[] index = v.getIndex();
double[] data = v.getData();
int length = v.getUsed();
for (int j = 0; j < length; ++j)
yd[index[j]] += data[j] * xd[i];
}
// y = alpha*y = alpha * A'x + y
return y.scale(alpha);
}
代码示例来源:origin: fommil/matrix-toolkits-java
@Override
public Vector multAdd(double alpha, Vector x, Vector y) {
if (!(x instanceof DenseVector) || !(y instanceof DenseVector))
return super.multAdd(alpha, x, y);
checkMultAdd(x, y);
double[] xd = ((DenseVector) x).getData();
double[] yd = ((DenseVector) y).getData();
// y = 1/alpha * y
y.scale(1. / alpha);
// y = A*x + y
for (int i = 0; i < numColumns; ++i) {
SparseVector v = colD[i];
int[] index = v.getIndex();
double[] data = v.getData();
int length = v.getUsed();
for (int j = 0; j < length; ++j)
yd[index[j]] += data[j] * xd[i];
}
// y = alpha*y = alpha * A'x + y
return y.scale(alpha);
}
代码示例来源:origin: openimaj/openimaj
@Override
public Vector[] apply(double[] in) {
Vector[] vmat = new Vector[in.length];
vmat[0] = new DenseVector(in);
double norm = vmat[0].norm(Norm.Two);
vmat[0].scale(1/norm);
for (int j = 1; j < in.length; j++) {
Vector randvec = randvec(vmat[0].size(),norm);
vmat[j] = new DenseVector(vmat[0]).add(randvec);
for (int i = 0; i < j; i++) {
vmat[j].add(-1, project(vmat[j],vmat[i]));
}
vmat[j].scale(1/vmat[j].norm(Norm.Two));
}
return vmat;
}
代码示例来源:origin: nz.ac.waikato.cms.weka/discriminantAnalysis
/**
* Computes the mean vector for the given dataset.
*/
protected Vector computeMean(Instances data, double[] totalWeight, int aI) {
Vector meanVector = new DenseVector(data.numAttributes() - 1);
totalWeight[aI] = 0;
for (Instance inst : data) {
if (!inst.classIsMissing()) {
meanVector.add(inst.weight(), instanceToVector(inst));
totalWeight[aI] += inst.weight();
}
}
meanVector.scale(1.0 / totalWeight[aI]);
return meanVector;
}
代码示例来源:origin: fommil/matrix-toolkits-java
public Vector solve(Matrix A, Vector b, Vector x)
throws IterativeSolverNotConvergedException {
checkSizes(A, b, x);
double alpha = 0, beta = 0, c = 0, d = 0;
A.multAdd(-1, x, r.set(b));
c = (eigmax - eigmin) / 2.0;
d = (eigmax + eigmin) / 2.0;
for (iter.setFirst(); !iter.converged(r, x); iter.next()) {
M.apply(r, z);
if (iter.isFirst()) {
p.set(z);
alpha = 2.0 / d;
} else {
beta = (alpha * c) / 2.0;
beta *= beta;
alpha = 1.0 / (d - beta);
p.scale(beta).add(z);
}
A.mult(p, q);
x.add(alpha, p);
r.add(-alpha, q);
}
return x;
}
代码示例来源:origin: com.googlecode.matrix-toolkits-java/mtj
public Vector solve(Matrix A, Vector b, Vector x)
throws IterativeSolverNotConvergedException {
checkSizes(A, b, x);
double alpha = 0, beta = 0, rho = 0, rho_1 = 0;
A.multAdd(-1, x, r.set(b));
for (iter.setFirst(); !iter.converged(r, x); iter.next()) {
M.apply(r, z);
rho = r.dot(z);
if (iter.isFirst())
p.set(z);
else {
beta = rho / rho_1;
p.scale(beta).add(z);
}
A.mult(p, q);
alpha = rho / p.dot(q);
x.add(alpha, p);
r.add(-alpha, q);
rho_1 = rho;
}
return x;
}
内容来源于网络,如有侵权,请联系作者删除!