from collections import OrderedDict
import torch
from LPRNetN.model.STN import STNet
STN = STNet()
state_dict1 = torch.load('weights/STNNet.pth', map_location=lambda storage, loc: storage)
state_dict2 = torch.load('weights/STNNet.pth', map_location=lambda storage, loc: storage)
new_state_dict1 = OrderedDict()
new_state_dict2 = OrderedDict()
for k, v in state_dict2.items():
name = k.replace('module.', '') # remove `module.`
new_state_dict2[name] = v
for k, v in state_dict1.items():
name = k.replace('module.', '') # remove `module.`
new_state_dict1[name] =0.5*new_state_dict2[name]+0.5* v
STN.load_state_dict(new_state_dict1)
版权说明 : 本文为转载文章, 版权归原作者所有 版权申明
原文链接 : https://blog.csdn.net/jacke121/article/details/122708940
内容来源于网络,如有侵权,请联系作者删除!