pytorch 模型加权

x33g5p2x  于2022-02-07 转载在 其他  
字(0.6k)|赞(0)|评价(0)|浏览(221)
from collections import OrderedDict

import torch

from LPRNetN.model.STN import STNet

STN = STNet()

state_dict1 = torch.load('weights/STNNet.pth', map_location=lambda storage, loc: storage)
state_dict2 = torch.load('weights/STNNet.pth', map_location=lambda storage, loc: storage)
new_state_dict1 = OrderedDict()
new_state_dict2 = OrderedDict()
for k, v in state_dict2.items():
    name = k.replace('module.', '')  # remove `module.`
    new_state_dict2[name] = v

for k, v in state_dict1.items():
    name = k.replace('module.', '')  # remove `module.`
    new_state_dict1[name] =0.5*new_state_dict2[name]+0.5* v

STN.load_state_dict(new_state_dict1)

相关文章