**摘要:**Goreplay 前称是 Gor,一个简单的 TCP/HTTP 流量录制及重放的工具,主要用 Go 语言编写。
本文分享自华为云社区《流量回放工具之 goreplay 核心源码分析》,作者:zuozewei。
Goreplay 前称是 Gor,一个简单的 TCP/HTTP 流量录制及重放的工具,主要用 Go 语言编写。
Github地址:https://github.com/buger/goreplay
这里以最新的 v1.3 版本为例,与 v1.0 的代码存在较大差异。
~/GoProjects/gor_org/goreplay release-1.3 ±✚ tree -L 1
.
├── COMM-LICENSE
├── Dockerfile
├── Dockerfile.dev
├── ELASTICSEARCH.md
├── LICENSE.txt
├── Makefile
├── Procfile
├── README.md
├── byteutils
├── capture
├── circle.yml
├── docs
├── elasticsearch.go
├── emitter.go
├── emitter_test.go
├── examples
├── go.mod
├── go.sum
├── gor.go
├── gor_stat.go
├── homebrew
├── http_modifier.go
├── http_modifier_settings.go
├── http_modifier_settings_test.go
├── http_modifier_test.go
├── http_prettifier.go
├── http_prettifier_test.go
├── input_dummy.go
├── input_file.go
├── input_file_test.go
├── input_http.go
├── input_http_test.go
├── input_kafka.go
├── input_kafka_test.go
├── input_raw.go
├── input_raw_test.go
├── input_tcp.go
├── input_tcp_test.go
├── kafka.go
├── limiter.go
├── limiter_test.go
├── middleware
├── middleware.go
├── middleware_test.go
├── mkdocs.yml
├── output_binary.go
├── output_dummy.go
├── output_file.go
├── output_file_test.go
├── output_http.go
├── output_http_test.go
├── output_kafka.go
├── output_kafka_test.go
├── output_null.go
├── output_s3.go
├── output_tcp.go
├── output_tcp_test.go
├── plugins.go
├── plugins_test.go
├── pro.go
├── proto
├── protocol.go
├── ring
├── s3
├── s3_reader.go
├── s3_test.go
├── settings.go
├── settings_test.go
├── sidenav.css
├── simpletime
├── site
├── size
├── snapcraft.yaml
├── tcp
├── tcp_client.go
├── test_input.go
├── test_output.go
├── vendor
└── version.go
工程目录比较扁平,主要看 plugin.go,settings.go,emitter.go 几个主要文件,其它分 input_xxx ,output_xxx 都是适配具体协议的输入输出插件,程序入口是 gor.go 的 main 函数。
主要文件说明:
goreplay 只有 input 和 output 两个概念,是 goreplay 对数据流的抽象,统称为 plugin。
gor.go 中 main 函数,它主要做了以下事情:
1、解析命令行参数:
// Parse parses the command-line flags from os.Args[1:]. Must be called
// after all flags are defined and before flags are accessed by the program.
func Parse() {
// Ignore errors; CommandLine is set for ExitOnError.
CommandLine.Parse(os.Args[1:])
}
2、初始化全局的 Settings 变量。
func checkSettings() {
if Settings.OutputFileConfig.SizeLimit < 1 {
Settings.OutputFileConfig.SizeLimit.Set("32mb")
}
if Settings.OutputFileConfig.OutputFileMaxSize < 1 {
Settings.OutputFileConfig.OutputFileMaxSize.Set("1tb")
}
if Settings.CopyBufferSize < 1 {
Settings.CopyBufferSize.Set("5mb")
}
}
3、命令行参数的定义在 settings.go 的 init 函数中,会先于 main 函数执行。
func init() {
flag.Usage = usage
flag.StringVar(&Settings.Pprof, "http-pprof", "", "Enable profiling. Starts http server on specified port, exposing special /debug/pprof endpoint. Example: `:8181`")
flag.IntVar(&Settings.Verbose, "verbose", 0, "set the level of verbosity, if greater than zero then it will turn on debug output")
flag.BoolVar(&Settings.Stats, "stats", false, "Turn on queue stats output")
if DEMO == "" {
flag.DurationVar(&Settings.ExitAfter, "exit-after", 0, "exit after specified duration")
} else {
Settings.ExitAfter = 5 * time.Minute
}
flag.BoolVar(&Settings.SplitOutput, "split-output", false, "By default each output gets same traffic. If set to `true` it splits traffic equally among all outputs.")
flag.BoolVar(&Settings.RecognizeTCPSessions, "recognize-tcp-sessions", false, "[PRO] If turned on http output will create separate worker for each TCP session. Splitting output will session based as well.")
......
// default values, using for tests
Settings.OutputFileConfig.SizeLimit = 33554432
Settings.OutputFileConfig.OutputFileMaxSize = 1099511627776
Settings.CopyBufferSize = 5242880
}
4、根据命令行传参初始化插件,在 main 函数中调用 InitPlugins 函数。
// NewPlugins specify and initialize all available plugins
func NewPlugins() *InOutPlugins {
plugins := new(InOutPlugins)
for _, options := range Settings.InputDummy {
plugins.registerPlugin(NewDummyInput, options)
}
......
return plugins
}
5、调用 Start 函数,启动 emitter,每个 input 插件,都启动一个协程,读取 input,写 output。
/ Start initialize loop for sending data from inputs to outputs
func (e *Emitter) Start(plugins *InOutPlugins, middlewareCmd string) {
if Settings.CopyBufferSize < 1 {
Settings.CopyBufferSize = 5 << 20
}
e.plugins = plugins
if middlewareCmd != "" {
middleware := NewMiddleware(middlewareCmd)
for _, in := range plugins.Inputs {
middleware.ReadFrom(in)
}
e.plugins.Inputs = append(e.plugins.Inputs, middleware)
e.plugins.All = append(e.plugins.All, middleware)
e.Add(1)
go func() {
defer e.Done()
if err := CopyMulty(middleware, plugins.Outputs...); err != nil {
Debug(2, fmt.Sprintf("[EMITTER] error during copy: %q", err))
}
}()
} else {
for _, in := range plugins.Inputs {
e.Add(1)
go func(in PluginReader) {
defer e.Done()
if err := CopyMulty(in, plugins.Outputs...); err != nil {
Debug(2, fmt.Sprintf("[EMITTER] error during copy: %q", err))
}
}(in)
}
}
}
如果只有一个协程,存在性能瓶颈。默认是一个 input 复制多份,写多个 output,如果传了 --split-output 参数,并且有多个 output ,则使用简单的 Round Robin 算法来选 output,不会写多份。多个 input 之间是并行的,但单个 input 到多个 output,是串行的。所有 input 都实现了 io.Reader 接口,output 都实现了 io.Writer 接口。所以阅读代码时,input 的入口是 Read() 方法,output 的入口是 Write() 方法。
// CopyMulty copies from 1 reader to multiple writers
func CopyMulty(src PluginReader, writers ...PluginWriter) error {
wIndex := 0
modifier := NewHTTPModifier(&Settings.ModifierConfig)
filteredRequests := make(map[string]int64)
filteredRequestsLastCleanTime := time.Now().UnixNano()
filteredCount := 0
for {
msg, err := src.PluginRead()
if err != nil {
if err == ErrorStopped || err == io.EOF {
return nil
}
return err
}
if msg != nil && len(msg.Data) > 0 {
if len(msg.Data) > int(Settings.CopyBufferSize) {
msg.Data = msg.Data[:Settings.CopyBufferSize]
}
meta := payloadMeta(msg.Meta)
if len(meta) < 3 {
Debug(2, fmt.Sprintf("[EMITTER] Found malformed record %q from %q", msg.Meta, src))
continue
}
requestID := byteutils.SliceToString(meta[1])
// start a subroutine only when necessary
if Settings.Verbose >= 3 {
Debug(3, "[EMITTER] input: ", byteutils.SliceToString(msg.Meta[:len(msg.Meta)-1]), " from: ", src)
}
if modifier != nil {
Debug(3, "[EMITTER] modifier:", requestID, "from:", src)
if isRequestPayload(msg.Meta) {
msg.Data = modifier.Rewrite(msg.Data)
// If modifier tells to skip request
if len(msg.Data) == 0 {
filteredRequests[requestID] = time.Now().UnixNano()
filteredCount++
continue
}
Debug(3, "[EMITTER] Rewritten input:", requestID, "from:", src)
} else {
if _, ok := filteredRequests[requestID]; ok {
delete(filteredRequests, requestID)
filteredCount--
continue
}
}
}
if Settings.PrettifyHTTP {
msg.Data = prettifyHTTP(msg.Data)
if len(msg.Data) == 0 {
continue
}
}
if Settings.SplitOutput {
if Settings.RecognizeTCPSessions {
if !PRO {
log.Fatal("Detailed TCP sessions work only with PRO license")
}
hasher := fnv.New32a()
hasher.Write(meta[1])
wIndex = int(hasher.Sum32()) % len(writers)
if _, err := writers[wIndex].PluginWrite(msg); err != nil {
return err
}
} else {
// Simple round robin
if _, err := writers[wIndex].PluginWrite(msg); err != nil {
return err
}
wIndex = (wIndex + 1) % len(writers)
}
} else {
for _, dst := range writers {
if _, err := dst.PluginWrite(msg); err != nil && err != io.ErrClosedPipe {
return err
}
}
}
}
// Run GC on each 1000 request
if filteredCount > 0 && filteredCount%1000 == 0 {
// Clean up filtered requests for which we didn't get a response to filter
now := time.Now().UnixNano()
if now-filteredRequestsLastCleanTime > int64(60*time.Second) {
for k, v := range filteredRequests {
if now-v > int64(60*time.Second) {
delete(filteredRequests, k)
filteredCount--
}
}
filteredRequestsLastCleanTime = time.Now().UnixNano()
}
}
}
}
轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到 N(内部服务器个数),然后重新开始循环。
算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。
1、goreplay 抓包调用 google/gopacket 来实现,后者通过 cgo 来调用 libpcap。整体工具小巧而实用,既可以实现 rawsocket 的抓包,也可以实现 http 的录制、回放,也支持多实例之间的级联。RAW_SOCKET 允许监听任何端口上的流量,因为它们是在IP级别上操作的。端口是 TCP 的特性,具有流量控制、传输可靠等优点。这个包实现了自己的TCP层: 使用tcp_packet 解析TCP包。流控制由 tcp_message.go管理
参考地址:http://en.wikipedia.org/wiki/Raw_socket
2、用三个猴头 emoji 字符作为请求分隔符,第一眼看到感觉挺搞笑的。
比如:
3、配置信息全靠启动命令参数。
比如:
/usr/local/bin/gor --input-raw :80 --input-raw-track-response --input-raw-bpf-filter "host ! 167.xxx.xxx.xx" --input-raw-override-snaplen --prettify-http --output-http http://192.168.3.110:80 --output-http-timeout 10s --output-http-workers 1000 --output-http-workers-min 100 --http-allow-header "Aww-Csid: xxxxx" --output-http-track-response --http-allow-method POST --middleware "/production/www/go_replay/client/middleware/sync --project {project_name}" --output-http-compatibility-mode --http-allow-url /article/detail
4、goreplay 支持 Java 程序配合工作的。支持开启插件模式:
gor --input-raw :80 --middleware "java -jar xxx.jar" --output-file request.gor
通过 middleware 参数可以传递一条命令给 gor ,gor 会拉起一个进程执行这个命令。在录制过程中,gory 通过获取进程的标准输入和输出与插件进程进行通信。
数据流向大致如下:
+-------------+ Original request +--------------+ Modified request +-------------+
| Gor input |----------STDIN---------->| Middleware |----------STDOUT---------->| Gor output |
+-------------+ +--------------+ +-------------+
input-raw java -jar xxx.jar output-file
5、拦截器的设置
参考地址:https://github.com/buger/goreplay/wiki/Dealing-with-missing-requests-and-responses
实际使用过程中,发现录制流量并发达到一定量级会丢失很多请求,经过阅读官方文档和测试,发现最相关的一个关键参数是 –input-raw-buffer-size。
其主要原因四由于 gor 本身需要对数据包进行读取,协议解析等,借助于 pcap 及 os 缓冲区,当缓冲区不足,到达的数据包不足以组装 Http 请求则出现丢失或失效请求,无法正确处理。
listener.go 该参数是作用在底层录制上:
inactive.SetTimeout(t.messageExpire)
inactive.SetPromisc(true)
inactive.SetImmediateMode(t.immediateMode)
if t.immediateMode {
log.Println("Setting immediate mode")
}
if t.bufferSize > 0 {
inactive.SetBufferSize(int(t.bufferSize))
}
handle, herr := inactive.Activate()
if herr != nil {
log.Println("PCAP Activate error:", herr)
wg.Done()
return
}
在具体复制动作定义bufferSize:
// CopyMulty copies from 1 reader to multiple writers
func CopyMulty(src io.Reader, writers ...io.Writer) (err error) {
buf := make([]byte, Settings.copyBufferSize)
wIndex := 0
modifier := NewHTTPModifier(&Settings.modifierConfig)
filteredRequests := make(map[string]time.Time)
filteredRequestsLastCleanTime := time.Now()
......
}
最后附送一张 gor 代码调用链路图。
原图地址:
版权说明 : 本文为转载文章, 版权归原作者所有 版权申明
原文链接 : https://huaweicloud.blog.csdn.net/article/details/123002104
内容来源于网络,如有侵权,请联系作者删除!