论文地址:https://arxiv.org/pdf/2106.14112.pdf
源码地址:https://github.com/emadeldeen24/TS-TCC
Learning decent representations from unlabeledtime-series data with temporal dynamics is avery challenging task. In this paper, we pro-pose an unsupervised Time-Series representationlearning framework via Temporal and ContextualContrasting (TS-TCC), to learn time-series repre-sentation from unlabeled data. First, the raw time-series data are transformed into two different yetcorrelated views by using weak and strong augmen-tations. Second, we propose a novel temporal con-trasting module to learn robust temporal represen-tations by designing a tough cross-view predictiontask. Last, to further learn discriminative represen-tations, we propose a contextual contrasting mod-ule built upon the contexts from the temporal con-trasting module. It attempts to maximize the sim-ilarity among different contexts of the same sam-ple while minimizing similarity among contexts ofdifferent samples. Experiments have been carriedout on three real-world time-series datasets. The re-sults manifest that training a linear classifier on topof the features learned by our proposed TS-TCCperforms comparably with the supervised training.Additionally, our proposed TS-TCC shows highefficiency in few-labeled data and transfer learn-ing scenarios.
从具有时间动态性的未标记时间序列数据中学习合理的表示是一项非常具有挑战性的任务。本文提出一种无监督的时间序列表示学习框架( TS-TCC ),用于从未标注数据中学习时间序列表示。首先,利用弱和强两种增强方式,将原始时间序列数据转化为两种不同但相关的视图。其次,我们提出了一种新的时间对比模块,通过设计一个艰巨的跨视图预测任务来学习鲁棒的时间表示。最后,为了进一步学习区分性表示,我们从时间对比模块出发,提出了基于上下文的上下文对比模块。它试图最大化同一样本的不同上下文之间的相似性,同时最小化不同样本上下文之间的相似性。在三个真实时间序列数据集上进行了实验。实验结果表明,在TS - TCC模型学习的特征基础上训练线性分类器,与有监督训练相比具有更好的性能。此外,我们提出的TS-TCC在少标记数据和迁移学习场景中表现出很高的效率。
首先介绍对时间序列数据进行标记的困难性,然后分别介绍自监督学习和对比学习的应用,最后介绍提出的时间序列表示学习框架(TS-TCC)。
详细介绍了提出的时间序列表示学习框架(TS-TCC),主要包括三个模块:
2. 介绍实验细节
介绍实验结果与分析。
为了显示提出的TS-TCC的有效性,在线性评价、半监督训练和转移学习三种不同的训练设置上进行了测试。为了更好地评价不平衡数据集,采用精度和宏观平均F1 - score ( MF1 )两个指标来评价性能。
总结。
包括两方面的工作:数据增强和编码。具体如下:
使用一个视图的过去来预测另一个视图的未来,从而执行跨视图预测任务。
将编码后的视图(zw、zs)经过一个Transformer结构得到一个结果(cw、cs)。其中zs表示强增强编码结果和zw表示弱增强编码结果。
使用的Transformer结构如下:
然后,使用cw预测zs,cs预测zw,损失设计为:利用时间对比损失最小化同一样本的预测表示和真实表示之间的点积,同时最大化与批量内其他样本点积。
给定一批N个输入样本,我们将从其两个增强视图中为每个样本设置两个上下文,从而拥有2N个上下文。
定义同一输入的两个增强视图为一个正对,与同批内其他输入为负对。
通过上下文对比损失来最大化正对之间的相似度,最小化负对之间的相似度。损失函数如下:
从而,架构总体损失为:
版权说明 : 本文为转载文章, 版权归原作者所有 版权申明
原文链接 : https://blog.csdn.net/weixin_43598687/article/details/124755903
内容来源于网络,如有侵权,请联系作者删除!