小明为位置1,求他到其他各顶点的距离。
package graph.dijkstra;
import java.util.Scanner;
import java.util.Stack;
public class Dijkstra {
static final int MaxVnum = 100; // 顶点数最大值
static final int INF = 0x3f3f3f3f; //无穷大
static final int dist[] = new int[MaxVnum]; // 最短距离
static final int p[] = new int[MaxVnum]; // 前驱数组
static final boolean flag[] = new boolean[MaxVnum]; // 如果 s[i] 等于 true,说明顶点 i 已经加入到集合 S ;否则顶点 i 属于集合 V-S
static int locatevex(AMGraph G, char x) {
for (int i = 0; i < G.vexnum; i++) // 查找顶点信息的下标
if (x == G.Vex[i])
return i;
return -1; // 没找到
}
static void CreateAMGraph(AMGraph G) {
Scanner scanner = new Scanner(System.in);
int i, j;
char u, v;
int w;
System.out.println("请输入顶点数:");
G.vexnum = scanner.nextInt();
System.out.println("请输入边数:");
G.edgenum = scanner.nextInt();
System.out.println("请输入顶点信息:");
// 输入顶点信息,存入顶点信息数组
for (int k = 0; k < G.vexnum; k++) {
G.Vex[k] = scanner.next().charAt(0);
}
//初始化邻接矩阵所有值为0,如果是网,则初始化邻接矩阵为无穷大
for (int m = 0; m < G.vexnum; m++)
for (int n = 0; n < G.vexnum; n++)
G.Edge[m][n] = INF;
System.out.println("请输入每条边依附的两个顶点及权值:");
while (G.edgenum-- > 0) {
u = scanner.next().charAt(0);
v = scanner.next().charAt(0);
w = scanner.nextInt();
i = locatevex(G, u);// 查找顶点 u 的存储下标
j = locatevex(G, v);// 查找顶点 v 的存储下标
if (i != -1 && j != -1)
G.Edge[i][j] = w; //有向图邻接矩阵
else {
System.out.println("输入顶点信息错!请重新输入!");
G.edgenum++; // 本次输入不算
}
}
}
static void print(AMGraph G) { // 输出邻接矩阵
System.out.println("图的邻接矩阵为:");
for (int i = 0; i < G.vexnum; i++) {
for (int j = 0; j < G.vexnum; j++)
System.out.print(G.Edge[i][j] + "\t");
System.out.println();
}
}
public static void main(String[] args) {
AMGraph G = new AMGraph();
int st;
char u;
CreateAMGraph(G);
System.out.println("请输入源点的信息:");
Scanner scanner = new Scanner(System.in);
u = scanner.next().charAt(0);
;
st = locatevex(G, u);//查找源点u的存储下标
Dijkstra(G, st);
System.out.println("小明所在的位置:" + u);
for (int i = 0; i < G.vexnum; i++) {
System.out.print("小明:" + u + " - " + "要去的位置:" + G.Vex[i]);
if (dist[i] == INF)
System.out.print(" sorry,无路可达");
else
System.out.println(" 最短距离为:" + dist[i]);
}
findpath(G, u);
}
public static void Dijkstra(AMGraph G, int u) {
for (int i = 0; i < G.vexnum; i++) {
dist[i] = G.Edge[u][i]; //初始化源点u到其他各个顶点的最短路径长度
flag[i] = false;
if (dist[i] == INF)
p[i] = -1; //源点u到该顶点的路径长度为无穷大,说明顶点i与源点u不相邻
else
p[i] = u; //说明顶点i与源点u相邻,设置顶点i的前驱p[i]=u
}
dist[u] = 0;
flag[u] = true; //初始时,集合S中只有一个元素:源点u
for (int i = 0; i < G.vexnum; i++) {
int temp = INF, t = u;
for (int j = 0; j < G.vexnum; j++) //在集合V-S中寻找距离源点u最近的顶点t
if (!flag[j] && dist[j] < temp) {
t = j;
temp = dist[j];
}
if (t == u) return; //找不到t,跳出循环
flag[t] = true; //否则,将t加入集合
for (int j = 0; j < G.vexnum; j++)//更新V-S中与t相邻接的顶点到源点u的距离
if (!flag[j] && G.Edge[t][j] < INF)
if (dist[j] > (dist[t] + G.Edge[t][j])) {
dist[j] = dist[t] + G.Edge[t][j];
p[j] = t;
}
}
}
public static void findpath(AMGraph G, char u) {
int x;
Stack<Integer> S = new Stack<>();
System.out.println("源点为:" + u);
for (int i = 0; i < G.vexnum; i++) {
x = p[i];
if (x == -1 && u != G.Vex[i]) {
System.out.println("源点到其它各顶点最短路径为:" + u + "--" + G.Vex[i] + " sorry,无路可达");
continue;
}
while (x != -1) {
S.push(x);
x = p[x];
}
System.out.println("源点到其它各顶点最短路径为:");
while (!S.empty()) {
System.out.print(G.Vex[S.peek()] + "--");
S.pop();
}
System.out.println(G.Vex[i] + " 最短距离为:" + dist[i]);
}
}
}
class AMGraph {
char Vex[] = new char[Dijkstra.MaxVnum];
int Edge[][] = new int[Dijkstra.MaxVnum][Dijkstra.MaxVnum];
int vexnum; // 顶点数
int edgenum; // 边数
}
版权说明 : 本文为转载文章, 版权归原作者所有 版权申明
原文链接 : https://blog.csdn.net/chengqiuming/article/details/125666127
内容来源于网络,如有侵权,请联系作者删除!