给定一个正整数 n ,将其拆分为 k 个正整数的和(k >= 2),并使这些整数的乘积最大化。
返回你可以获得的最大乘积 。
示例 1:
输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:
输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。
提示:
2 <= n <= 58
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/integer-break
(1)动态规划
定义 dp 数组,其中 dp[i] 表示拆分 i 可获得的最大乘积。当 i ≥ 2 时,对于每个 i,先将 i 分解为 j 和 i - j,然后再分情况进行判断:
① 如果 i - j 不再分解,那么 dp[i] = j * (i - j)
② 如果 i - j 继续分解,那么 dp[i] = j * dp[i - j]
其中 j 的取值范围是 [1, i - 1],所以需要遍历 j 的所有可能情况,然后用 dp[i] 保存最大值。
//思路1————动态规划
class Solution {
public int integerBreak(int n) {
// dp[i] 表示拆分 i 可获得的最大乘积
int[] dp = new int[n + 1];
for (int i = 2; i <= n; i++) {
int tmpMax = 0;
/*
先将 i 分解为 j 和 i - j
如果 i - j 不再分解,那么 dp[i] = j * (i - j)
如果 i - j 继续分解,那么 dp[i] = j * dp[i - j]
其中 j 的取值范围是 [1, i - 1],所以需要遍历 j 的所有可能情况
*/
for (int j = 1; j < i; j++) {
tmpMax = Math.max(tmpMax, Math.max(j * (i - j), j * dp[i - j]));
}
dp[i] = tmpMax;
}
return dp[n];
}
}
版权说明 : 本文为转载文章, 版权归原作者所有 版权申明
原文链接 : https://blog.csdn.net/weixin_43004044/article/details/126328337
内容来源于网络,如有侵权,请联系作者删除!