java.lang.Math.log1p()方法的使用及代码示例

x33g5p2x  于2022-01-16 转载在 其他  
字(9.5k)|赞(0)|评价(0)|浏览(199)

本文整理了Java中java.lang.Math.log1p()方法的一些代码示例,展示了Math.log1p()的具体用法。这些代码示例主要来源于Github/Stackoverflow/Maven等平台,是从一些精选项目中提取出来的代码,具有较强的参考意义,能在一定程度帮忙到你。Math.log1p()方法的具体详情如下:
包路径:java.lang.Math
类名称:Math
方法名:log1p

Math.log1p介绍

[英]Returns the closest double approximation of the natural logarithm of the sum of the argument and 1. If the argument is very close to 0, it is much more accurate to use log1p(d) than log(1.0+d) (due to numerical cancellation). The returned result is within 1 ulp (unit in the last place) of the real result and is semi-monotonic.

Special cases:

  • log1p(+0.0) = +0.0
  • log1p(-0.0) = -0.0
  • log1p((anything < 1)) = NaN
  • log1p(-1.0) = -infinity
  • log1p(+infinity) = +infinity
  • log1p(-infinity) = NaN
  • log1p(NaN) = NaN
    [中]返回参数和1之和的自然对数的最接近的双近似值。如果参数非常接近于0,则使用log1p(d)比使用log(1.0+d)准确得多(由于数字相消)。返回的结果与实际结果的距离在1 ulp(最后一位的单位)以内,并且是半单调的。
    特殊情况:
    *log1p(+0.0)=+0.0
    *log1p(-0.0)=-0.0
    *log1p((任何<1))=NaN
    *log1p(-1.0)=-无穷大
    *log1p(+无穷大)=+无穷大
    *log1p(-无穷大)=NaN
    *log1p(NaN)=NaN

代码示例

代码示例来源:origin: cmusphinx/sphinx4

/**
 * Compute mel frequency from linear frequency.
 *
 * @param inputFreq the input frequency in linear scale
 * @return the frequency in a mel scale
 */
private double linearToMel(double inputFreq) {
  return 1127 * Math.log1p(inputFreq / 700);
}

代码示例来源:origin: apache/kylin

/**
 * the Percentile is non-fixed length that is affected by the count and compression mainly. so we collect some statistics
 * about it and do some analysis, which get from test and the T-digest Paper
 *
 * As a result, we conclude its regular pattern by Stata , a tool help construct function model.
 * 0 - 2 * compression it grows a linear function which is easily derived from T-digest Algorithm
 * 2 * compression - 50000000 it grows roughly a log and the accuracy increases with the number of samples observed
 *
 * @param count
 * @return
 */
public double getBytesEstimate(double count) {
  if (count <= 2 * compression)
    return 16 + count * 5;
  switch ((int) compression) {
  case 100:
    return 597.9494 * Math.log1p(count) - 2358.987;
  case 1000:
    return 5784.34 * Math.log1p(count) - 35030.97;
  case 10000:
    return 54313.96 * Math.log1p(count) - 438988.8;
  default:
    return 0.0;
  }
}

代码示例来源:origin: apache/incubator-druid

@Override
 protected ExprEval eval(double param)
 {
  return ExprEval.of(Math.log1p(param));
 }
}

代码示例来源:origin: apache/mahout

/**
 * Returns a random number from the distribution.
 */
@Override
public double nextDouble() {
 return -Math.log1p(-randomDouble()) / lambda;
}

代码示例来源:origin: apache/mahout

@Override
 public double apply(double arg1) {
  return -Math.log1p(-rand.nextDouble());
 }
});

代码示例来源:origin: google/guava

/**
 * Returns an estimate for the total number of distinct elements that have been added to this
 * Bloom filter. This approximation is reasonably accurate if it does not exceed the value of
 * {@code expectedInsertions} that was used when constructing the filter.
 *
 * @since 22.0
 */
public long approximateElementCount() {
 long bitSize = bits.bitSize();
 long bitCount = bits.bitCount();
 /**
  * Each insertion is expected to reduce the # of clear bits by a factor of
  * `numHashFunctions/bitSize`. So, after n insertions, expected bitCount is `bitSize * (1 - (1 -
  * numHashFunctions/bitSize)^n)`. Solving that for n, and approximating `ln x` as `x - 1` when x
  * is close to 1 (why?), gives the following formula.
  */
 double fractionOfBitsSet = (double) bitCount / bitSize;
 return DoubleMath.roundToLong(
   -Math.log1p(-fractionOfBitsSet) * bitSize / numHashFunctions, RoundingMode.HALF_UP);
}

代码示例来源:origin: apache/mahout

public Vector logNormalize(double power, double normLength) {
 // we can special case certain powers
 if (Double.isInfinite(power) || power <= 1.0) {
  throw new IllegalArgumentException("Power must be > 1 and < infinity");
 } else {
  double denominator = normLength * Math.log(power);
  Vector result = createOptimizedCopy();
  for (Element element : result.nonZeroes()) {
   element.set(Math.log1p(element.get()) / denominator);
  }
  return result;
 }
}

代码示例来源:origin: apache/ignite

/**
 * @param power Power.
 * @param normLen Normalized length.
 * @return logNormalized value.
 */
private Vector logNormalize(double power, double normLen) {
  assert !(Double.isInfinite(power) || power <= 1.0);
  double denominator = normLen * Math.log(power);
  Vector cp = copy();
  for (Element element : cp.all())
    element.set(Math.log1p(element.get()) / denominator);
  return cp;
}

代码示例来源:origin: prestodb/presto

/**
 * Returns an estimate for the total number of distinct elements that have been added to this
 * Bloom filter. This approximation is reasonably accurate if it does not exceed the value of
 * {@code expectedInsertions} that was used when constructing the filter.
 *
 * @since 22.0
 */
public long approximateElementCount() {
 long bitSize = bits.bitSize();
 long bitCount = bits.bitCount();
 /**
  * Each insertion is expected to reduce the # of clear bits by a factor of
  * `numHashFunctions/bitSize`. So, after n insertions, expected bitCount is `bitSize * (1 - (1 -
  * numHashFunctions/bitSize)^n)`. Solving that for n, and approximating `ln x` as `x - 1` when x
  * is close to 1 (why?), gives the following formula.
  */
 double fractionOfBitsSet = (double) bitCount / bitSize;
 return DoubleMath.roundToLong(
   -Math.log1p(-fractionOfBitsSet) * bitSize / numHashFunctions, RoundingMode.HALF_UP);
}

代码示例来源:origin: apache/mahout

private static double[] exp(int n) {
 double[] r = new double[n];
 Random gen = RandomUtils.getRandom(1L);
 for (int i = 0; i < n; i++) {
  r[i] = -Math.log1p(-gen.nextDouble());
 }
 return r;
}

代码示例来源:origin: google/j2objc

/**
 * Returns an estimate for the total number of distinct elements that have been added to this
 * Bloom filter. This approximation is reasonably accurate if it does not exceed the value of
 * {@code expectedInsertions} that was used when constructing the filter.
 *
 * @since 22.0
 */
public long approximateElementCount() {
 long bitSize = bits.bitSize();
 long bitCount = bits.bitCount();
 /**
  * Each insertion is expected to reduce the # of clear bits by a factor of
  * `numHashFunctions/bitSize`. So, after n insertions, expected bitCount is `bitSize * (1 - (1 -
  * numHashFunctions/bitSize)^n)`. Solving that for n, and approximating `ln x` as `x - 1` when x
  * is close to 1 (why?), gives the following formula.
  */
 double fractionOfBitsSet = (double) bitCount / bitSize;
 return DoubleMath.roundToLong(
   -Math.log1p(-fractionOfBitsSet) * bitSize / numHashFunctions, RoundingMode.HALF_UP);
}

代码示例来源:origin: wildfly/wildfly

/**
 * Returns an estimate for the total number of distinct elements that have been added to this
 * Bloom filter. This approximation is reasonably accurate if it does not exceed the value of
 * {@code expectedInsertions} that was used when constructing the filter.
 *
 * @since 22.0
 */
public long approximateElementCount() {
 long bitSize = bits.bitSize();
 long bitCount = bits.bitCount();
 /**
  * Each insertion is expected to reduce the # of clear bits by a factor of
  * `numHashFunctions/bitSize`. So, after n insertions, expected bitCount is `bitSize * (1 - (1 -
  * numHashFunctions/bitSize)^n)`. Solving that for n, and approximating `ln x` as `x - 1` when x
  * is close to 1 (why?), gives the following formula.
  */
 double fractionOfBitsSet = (double) bitCount / bitSize;
 return DoubleMath.roundToLong(
   -Math.log1p(-fractionOfBitsSet) * bitSize / numHashFunctions, RoundingMode.HALF_UP);
}

代码示例来源:origin: apache/mahout

q = q0 - s * t + 0.25 * t * t + (ss + ss) * Math.log1p(v);
} else {
 q = q0 + 0.5 * t * t * ((((((((a9 * v + a8) * v + a7) * v + a6)
if (Math.log1p(-u) <= q) {
 return gds / rate;
 q = q0 - s * t + 0.25 * t * t + (ss + ss) * Math.log1p(v);
} else {
 q = q0 + 0.5 * t * t * ((((((((a9 * v + a8) * v + a7) * v + a6)

代码示例来源:origin: apache/mahout

@Test
public void beta() {
 Random r = RandomUtils.getRandom();
 for (int i = 0; i < 200; i++) {
  double alpha = -50 * Math.log1p(-r.nextDouble());
  double beta = -50 * Math.log1p(-r.nextDouble());
  double ref = Math.exp(Gamma.logGamma(alpha) + Gamma.logGamma(beta) - Gamma.logGamma(alpha + beta));
  double actual = Gamma.beta(alpha, beta);
  double err = (ref - actual) / ref;
  assertEquals("beta at (" + alpha + ", " + beta + ") relative error = " + err, 0, err, 1.0e-10);
 }
}

代码示例来源:origin: jtablesaw/tablesaw

/**
 * Returns the natural log of the values in this column, after adding 1 to each so that zero
 * values don't return -Infinity
 */
default DoubleColumn log1p() {
 DoubleColumn newColumn = DoubleColumn.create(name() + "[1og1p]", size());
 for (int i = 0; i < size(); i++) {
   newColumn.set(i, Math.log1p(getDouble(i)));
 }
 return newColumn;
}

代码示例来源:origin: OryxProject/oryx

double epsilon = model.getEpsilon();
 inputRDD = noNaN.map(tuple -> new UserItemStrength(tuple._1()._1(), tuple._1()._2(),
                           (float) Math.log1p(tuple._2() / epsilon)));
} else {
 inputRDD = noNaN.map(tuple -> new UserItemStrength(tuple._1()._1(), tuple._1()._2(),

代码示例来源:origin: org.elasticsearch/elasticsearch

@Override
  public double apply(double n) {
    return Math.log1p(n);
  }
},

代码示例来源:origin: org.elasticsearch/elasticsearch

@Override
  public double apply(double n) {
    return Math.log1p(n + 1);
  }
},

代码示例来源:origin: OryxProject/oryx

/**
 * Combines {@link Rating}s with the same user/item into one, with score as the sum of
 * all of the scores.
 */
private JavaRDD<Rating> aggregateScores(JavaRDD<? extends Rating> original, double epsilon) {
 JavaPairRDD<Tuple2<Integer,Integer>,Double> tuples =
   original.mapToPair(rating -> new Tuple2<>(new Tuple2<>(rating.user(), rating.product()), rating.rating()));
 JavaPairRDD<Tuple2<Integer,Integer>,Double> aggregated;
 if (implicit) {
  // TODO can we avoid groupByKey? reduce, combine, fold don't seem viable since
  // they don't guarantee the delete elements are properly handled
  aggregated = tuples.groupByKey().mapValues(MLFunctions.SUM_WITH_NAN);
 } else {
  // For non-implicit, last wins.
  aggregated = tuples.foldByKey(Double.NaN, (current, next) -> next);
 }
 JavaPairRDD<Tuple2<Integer,Integer>,Double> noNaN =
   aggregated.filter(kv -> !Double.isNaN(kv._2()));
 if (logStrength) {
  return noNaN.map(userProductScore -> new Rating(
    userProductScore._1()._1(),
    userProductScore._1()._2(),
    Math.log1p(userProductScore._2() / epsilon)));
 } else {
  return noNaN.map(userProductScore -> new Rating(
    userProductScore._1()._1(),
    userProductScore._1()._2(),
    userProductScore._2()));
 }
}

代码示例来源:origin: DataSketches/sketches-core

/**
 * Important note: do not change anything in the following function.
 * It has been carefully designed and tested for numerical accuracy.
 * In particular, the use of log1p and expm1 is critically important.
 * @param kf the value of k as a double
 * @param nf the value of n as a double
 * @param col the given column
 * @return the quantity qnj
 */
static double qnj(final double kf, final double nf, final int col) {
 final double tmp1 = -1.0 / (kf * (Math.pow(2.0, col)));
 final double tmp2 = Math.log1p(tmp1);
 return (-1.0 * (Math.expm1(nf * tmp2)));
}

相关文章