docker容器中的spark不读取kafka输入结构化流

fnatzsnv  于 2021-05-27  发布在  Spark
关注(0)|答案(1)|浏览(424)

当spark作业在没有docker的情况下通过 spark-submit 一切正常。但是,在docker容器上运行会导致不生成输出。
为了查看kafka本身是否正常工作,我将kafka提取到spark worker容器中,让控制台使用者收听相同的主机、端口和主题(kafka:9092,crypto\u topic)正确运行并显示输出(有一个生产者不断地将数据推送到另一个容器中的主题)
预期-

20/09/11 17:35:27 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.29.10:42565 with 366.3 MB RAM, BlockManagerId(driver, 192.168.29.10, 42565, None)
20/09/11 17:35:27 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 192.168.29.10, 42565, None)
20/09/11 17:35:27 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 192.168.29.10, 42565, None)
-------------------------------------------
Batch: 0
-------------------------------------------
+---------+-----------+-----------------+------+----------+------------+-----+-------------------+---------+
|name_coin|symbol_coin|number_of_markets|volume|market_cap|total_supply|price|percent_change_24hr|timestamp|
+---------+-----------+-----------------+------+----------+------------+-----+-------------------+---------+
+---------+-----------+-----------------+------+----------+------------+-----+-------------------+---------+
...
...
...
followed by more output

实际的

20/09/11 14:49:44 INFO BlockManagerMasterEndpoint: Registering block manager d7443d94165c:46203 with 366.3 MB RAM, BlockManagerId(driver, d7443d94165c, 46203, None)
20/09/11 14:49:44 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, d7443d94165c, 46203, None)
20/09/11 14:49:44 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, d7443d94165c, 46203, None)
20/09/11 14:49:44 INFO StandaloneSchedulerBackend: SchedulerBackend is ready for scheduling beginning after reached minRegisteredResourcesRatio: 0.0

no more output, stuck here

docker-compose.yml文件

version: "3"

services:

    zookeeper:
        image: zookeeper:3.6.1
        container_name: zookeeper
        hostname: zookeeper
        ports:
            - "2181:2181"
        networks:
            - crypto-network

    kafka:
        image: wurstmeister/kafka:2.13-2.6.0
        container_name: kafka
        hostname: kafka
        ports:
            - "9092:9092"
        environment:
            - KAFKA_ADVERTISED_HOST_NAME=kafka
            - KAFKA_ZOOKEEPER_CONNECT=zookeeper:2181 
            - KAFKA_ADVERTISED_PORT=9092
            # topic-name:partitions:in-sync-replicas:cleanup-policy
            - KAFKA_CREATE_TOPICS="crypto_topic:1:1:compact"
        networks:
            - crypto-network

    kafka-producer:
        image: python:3-alpine
        container_name: kafka-producer
        command: >
                sh -c "pip install -r /usr/src/producer/requirements.txt
                && python3 /usr/src/producer/kafkaProducerService.py"
        volumes:
            - ./kafkaProducer:/usr/src/producer
        networks: 
            - crypto-network

    cassandra:
        image: cassandra:3.11.8
        container_name: cassandra
        hostname: cassandra
        ports:
            - "9042:9042"
        #command:
        #    cqlsh -f /var/lib/cassandra/cql-queries.cql
        volumes:
            - ./cassandraData:/var/lib/cassandra

        networks:
            - crypto-network

    spark-master:
        image: bde2020/spark-master:2.4.5-hadoop2.7
        container_name: spark-master
        hostname: spark-master
        ports:
            - "8080:8080"
            - "7077:7077"
            - "6066:6066"
        networks:
            - crypto-network

    spark-consumer-worker:
        image: bde2020/spark-worker:2.4.5-hadoop2.7
        container_name: spark-consumer-worker
        environment:
            - SPARK_MASTER=spark://spark-master:7077
        ports:
            - "8081:8081"
        volumes:
            - ./sparkConsumer:/sparkConsumer
        networks:
            - crypto-network

networks:
  crypto-network:
    driver: bridge
``` `spark-submit` 是由

docker exec -it spark-consumer-worker bash

/spark/bin/spark-submit --master $SPARK_MASTER --class processing.SparkRealTimePriceUpdates
--packages com.datastax.spark:spark-cassandra-connector_2.11:2.4.3,org.apache.spark:spark-sql-kafka-0-10_2.11:2.4.5
/sparkConsumer/sparkconsumer_2.11-1.0-RELEASE.jar

Spark代码相关部分

val inputDF: DataFrame = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "kafka:9092")
.option("subscribe", "crypto_topic")
.load()

...
...
...

val queryPrice: StreamingQuery = castedDF
.writeStream
.outputMode("update")
.format("console")
.option("truncate", "false")
.start()

queryPrice.awaitTermination()
n3ipq98p

n3ipq98p1#

val inputDF: DataFrame = spark
    .readStream
    .format("kafka")
    .option("kafka.bootstrap.servers", "kafka:9092")
    .option("subscribe", "crypto_topic")
    .load()

这部分代码实际上是

val inputDF: DataFrame = spark
    .readStream
    .format("kafka")
    .option("kafka.bootstrap.servers", KAFKA_BOOTSTRAP_SERVERS)
    .option("subscribe", KAFKA_TOPIC)
    .load()

哪里 KAFKA_BOOTSTRAP_SERVERS 以及 KAFKA_TOPIC 在本地打包jar时从配置文件读入。
对我来说,最好的调试方法是将日志设置得更详细。
在当地 KAFKA_BOOTSTRAP_SERVERSlocalhost:9092 ,但在docker容器中它被更改为 kafka:9092 在那里的配置文件中。但这并没有反映出来,因为jar已经打包好了。所以将值改为 kafka:9092 当 Package 在当地固定它。
我会很感激任何关于如何让jar动态获取配置的帮助。我不想在码头集装箱上通过sbt Package 。

相关问题