我想加入 DataFrames
循环飞行。我使用一个属性文件来获取要在最终Dataframe中使用的列详细信息。属性文件-
a01=status:single,perm_id:multi
a02=status:single,actv_id:multi
a03=status:single,perm_id:multi,actv_id:multi
............................
............................
对于properties文件中的每一行,我需要创建一个dataframe并将其保存在一个文件中。使用加载属性文件 PropertiesReader
. 如果模式是single,那么我只需要从表中获取列值。但是如果是multi,那么我需要得到值的列表。
val propertyColumn = properties.get("a01") //a01 value we are getting as an argument. This might be a01,a02 or a0n
val columns = propertyColumn.toString.split(",").map(_.toString)
act\ det表格-
+-------+--------+-----------+-----------+-----------+------------+
|id |act_id |status |perm_id |actv_id | debt_id |
+-------+--------+-----------+-----------+-----------+------------+
| 1 |1 | 4 | 1 | 10 | 1 |
+-------+--------+-----------+-----------+-----------+------------+
| 2 |1 | 4 | 2 | 20 | 2 |
+-------+--------+-----------+-----------+-----------+------------+
| 3 |1 | 4 | 3 | 30 | 1 |
+-------+--------+-----------+-----------+-----------+------------+
| 4 |2 | 4 | 5 | 10 | 3 |
+-------+--------+-----------+-----------+-----------+------------+
| 5 |2 | 4 | 6 | 20 | 1 |
+-------+--------+-----------+-----------+-----------+------------+
| 6 |2 | 4 | 7 | 30 | 1 |
+-------+--------+-----------+-----------+-----------+------------+
| 7 |3 | 4 | 1 | 10 | 3 |
+-------+--------+-----------+-----------+-----------+------------+
| 8 |3 | 4 | 5 | 20 | 1 |
+-------+--------+-----------+-----------+-----------+------------+
| 9 |3 | 4 | 2 | 30 | 3 |
+-------+--------+-----------+-----------+------------+-----------+
主Dataframe-
val data=sqlcontext.sql(“select*from act\u det”)
我想要以下输出-
对于a01-
+-------+--------+-----------+
|act_id |status |perm_id |
+-------+--------+-----------+
| 1 | 4 | [1,2,3] |
+-------+--------+-----------+
| 2 | 4 | [5,6,7] |
+-------+--------+-----------+
| 3 | 4 | [1,5,2] |
+-------+--------+-----------+
对于a02-
+-------+--------+-----------+
|act_id |status |actv_id |
+-------+--------+-----------+
| 1 | 4 | [10,20,30]|
+-------+--------+-----------+
| 2 | 4 | [10,20,30]|
+-------+--------+-----------+
| 3 | 4 | [10,20,30]|
+-------+--------+-----------+
对于a03-
+-------+--------+-----------+-----------+
|act_id |status |perm_id |actv_id |
+-------+--------+-----------+-----------+
| 1 | 4 | [1,2,3] |[10,20,30] |
+-------+--------+-----------+-----------+
| 2 | 4 | [5,6,7] |[10,20,30] |
+-------+--------+-----------+-----------+
| 3 | 4 | [1,5,2] |[10,20,30] |
+-------+--------+-----------+-----------+
但是Dataframe的创建过程应该是动态的。
我已经尝试了下面的代码,但是我不能实现循环中Dataframe的连接逻辑。
val finalDF:DataFrame = ??? //empty dataframe
for {
column <- columns
} yeild {
val eachColumn = column.toString.split(":").map(_.toString)
val columnName = eachColumn(0)
val mode = eachColumn(1)
if(mode.equalsIgnoreCase("single")) {
data.select($"act_id", $"status").distinct
//I want to join finalDF with data.select($"act_id", $"status").distinct
} else if(mode.equalsIgnoreCase("multi")) {
data.groupBy($"act_id").agg(collect_list($"perm_id").as("perm_id"))
//I want to join finalDF with data.groupBy($"act_id").agg(collect_list($"perm_id").as("perm_id"))
}
}
任何建议或指导将不胜感激。
1条答案
按热度按时间jljoyd4f1#
检查以下代码。
定义
primary keys
```scala> val primary_key = Seq("act_id").map(col(_))
primary_key: Seq[org.apache.spark.sql.Column] = List(act_id)
scala> configs.foreach(println)
/*
(a01,status:single,perm_id:multi)
(a02,status:single,actv_id:multi)
(a03,status:single,perm_id:multi,actv_id:multi)
scala>
val columns = configs
.map(c => {
c._2
.split(",")
.map(c => {
val cc = c.split(":");
if(cc.tail.contains("single"))
first(col(cc.head)).as(cc.head)
else
collect_list(col(cc.head)).as(cc.head)
}
)
})
/*
columns: scala.collection.immutable.Iterable[Array[org.apache.spark.sql.Column]] = List(
Array(first(status, false) AS
status
, collect_list(perm_id) ASperm_id
),Array(first(status, false) AS
status
, collect_list(actv_id) ASactv_id
),Array(first(status, false) AS
status
, collect_list(perm_id) ASperm_id
, collect_list(actv_id) ASactv_id
))
scala> columns.map(c => df.groupBy(primary_key:*).agg(c.head,c.tail:*)).map(_.show(false))
+------+------+---------+
|act_id|status|perm_id |
+------+------+---------+
|3 |4 |[1, 5, 2]|
|1 |4 |[1, 2, 3]|
|2 |4 |[5, 6, 7]|
+------+------+---------+
+------+------+------------+
|act_id|status|actv_id |
+------+------+------------+
|3 |4 |[10, 20, 30]|
|1 |4 |[10, 20, 30]|
|2 |4 |[10, 20, 30]|
+------+------+------------+
+------+------+---------+------------+
|act_id|status|perm_id |actv_id |
+------+------+---------+------------+
|3 |4 |[1, 5, 2]|[10, 20, 30]|
|1 |4 |[1, 2, 3]|[10, 20, 30]|
|2 |4 |[5, 6, 7]|[10, 20, 30]|
+------+------+---------+------------+