scala spark连接循环中的Dataframe

g0czyy6m  于 2021-05-27  发布在  Spark
关注(0)|答案(1)|浏览(520)

我想加入 DataFrames 循环飞行。我使用一个属性文件来获取要在最终Dataframe中使用的列详细信息。属性文件-

a01=status:single,perm_id:multi
a02=status:single,actv_id:multi
a03=status:single,perm_id:multi,actv_id:multi
............................
............................

对于properties文件中的每一行,我需要创建一个dataframe并将其保存在一个文件中。使用加载属性文件 PropertiesReader . 如果模式是single,那么我只需要从表中获取列值。但是如果是multi,那么我需要得到值的列表。

val propertyColumn = properties.get("a01") //a01 value we are getting as an argument. This might be a01,a02 or a0n
val columns = propertyColumn.toString.split(",").map(_.toString)

act\ det表格-

+-------+--------+-----------+-----------+-----------+------------+
|id     |act_id  |status     |perm_id    |actv_id    | debt_id    |
+-------+--------+-----------+-----------+-----------+------------+
| 1     |1       |   4       | 1         | 10        | 1          |
+-------+--------+-----------+-----------+-----------+------------+
| 2     |1       |   4       | 2         | 20        | 2          |
+-------+--------+-----------+-----------+-----------+------------+
| 3     |1       |   4       | 3         | 30        | 1          |
+-------+--------+-----------+-----------+-----------+------------+
| 4     |2       |   4       | 5         | 10        | 3          |
+-------+--------+-----------+-----------+-----------+------------+
| 5     |2       |   4       | 6         | 20        | 1          |
+-------+--------+-----------+-----------+-----------+------------+
| 6     |2       |   4       | 7         | 30        | 1          |
+-------+--------+-----------+-----------+-----------+------------+
| 7     |3       |   4       | 1         | 10        | 3          |
+-------+--------+-----------+-----------+-----------+------------+
| 8     |3       |   4       | 5         | 20        | 1          |
+-------+--------+-----------+-----------+-----------+------------+
| 9     |3       |   4       | 2         | 30        | 3          |
+-------+--------+-----------+-----------+------------+-----------+

主Dataframe-
val data=sqlcontext.sql(“select*from act\u det”)
我想要以下输出-
对于a01-

+-------+--------+-----------+
|act_id |status  |perm_id    |
+-------+--------+-----------+
|     1 |   4    | [1,2,3]   |
+-------+--------+-----------+
|     2 |   4    |  [5,6,7]  |
+-------+--------+-----------+
|     3 |   4    |  [1,5,2]  |
+-------+--------+-----------+

对于a02-

+-------+--------+-----------+
    |act_id |status  |actv_id    |
    +-------+--------+-----------+
    |     1 |   4    | [10,20,30]|
    +-------+--------+-----------+
    |     2 |   4    | [10,20,30]|
    +-------+--------+-----------+
    |     3 |   4    | [10,20,30]|
    +-------+--------+-----------+

对于a03-

+-------+--------+-----------+-----------+
    |act_id |status  |perm_id    |actv_id    |
    +-------+--------+-----------+-----------+
    |     1 |   4    | [1,2,3]   |[10,20,30] |
    +-------+--------+-----------+-----------+
    |     2 |   4    |  [5,6,7]  |[10,20,30] |
    +-------+--------+-----------+-----------+
    |     3 |   4    |  [1,5,2]  |[10,20,30] |
    +-------+--------+-----------+-----------+

但是Dataframe的创建过程应该是动态的。
我已经尝试了下面的代码,但是我不能实现循环中Dataframe的连接逻辑。

val finalDF:DataFrame = ??? //empty dataframe
    for {
        column <- columns
    } yeild {
        val eachColumn = column.toString.split(":").map(_.toString)
        val columnName = eachColumn(0)
        val mode = eachColumn(1)
        if(mode.equalsIgnoreCase("single")) {
            data.select($"act_id", $"status").distinct
            //I want to join finalDF with data.select($"act_id", $"status").distinct
        } else if(mode.equalsIgnoreCase("multi")) {
            data.groupBy($"act_id").agg(collect_list($"perm_id").as("perm_id"))
            //I want to join finalDF with data.groupBy($"act_id").agg(collect_list($"perm_id").as("perm_id"))
        }
    }

任何建议或指导将不胜感激。

jljoyd4f

jljoyd4f1#

检查以下代码。

scala> df.show(false)
+---+------+------+-------+-------+-------+
|id |act_id|status|perm_id|actv_id|debt_id|
+---+------+------+-------+-------+-------+
|1  |1     |4     |1      |10     |1      |
|2  |1     |4     |2      |20     |2      |
|3  |1     |4     |3      |30     |1      |
|4  |2     |4     |5      |10     |3      |
|5  |2     |4     |6      |20     |1      |
|6  |2     |4     |7      |30     |1      |
|7  |3     |4     |1      |10     |3      |
|8  |3     |4     |5      |20     |1      |
|9  |3     |4     |2      |30     |3      |
+---+------+------+-------+-------+-------+

定义 primary keys ```
scala> val primary_key = Seq("act_id").map(col(_))
primary_key: Seq[org.apache.spark.sql.Column] = List(act_id)

配置

scala> configs.foreach(println)
/*
(a01,status:single,perm_id:multi)
(a02,status:single,actv_id:multi)
(a03,status:single,perm_id:multi,actv_id:multi)

  • /
构造表达式。

scala>
val columns = configs
.map(c => {
c._2
.split(",")
.map(c => {
val cc = c.split(":");
if(cc.tail.contains("single"))
first(col(cc.head)).as(cc.head)
else
collect_list(col(cc.head)).as(cc.head)
}
)
})

/*
columns: scala.collection.immutable.Iterable[Array[org.apache.spark.sql.Column]] = List(
Array(first(status, false) AS status, collect_list(perm_id) AS perm_id),
Array(first(status, false) AS status, collect_list(actv_id) AS actv_id),
Array(first(status, false) AS status, collect_list(perm_id) AS perm_id, collect_list(actv_id) AS actv_id)
)

  • /
最终结果

scala> columns.map(c => df.groupBy(primary_key:*).agg(c.head,c.tail:*)).map(_.show(false))
+------+------+---------+
|act_id|status|perm_id |
+------+------+---------+
|3 |4 |[1, 5, 2]|
|1 |4 |[1, 2, 3]|
|2 |4 |[5, 6, 7]|
+------+------+---------+

+------+------+------------+
|act_id|status|actv_id |
+------+------+------------+
|3 |4 |[10, 20, 30]|
|1 |4 |[10, 20, 30]|
|2 |4 |[10, 20, 30]|
+------+------+------------+

+------+------+---------+------------+
|act_id|status|perm_id |actv_id |
+------+------+---------+------------+
|3 |4 |[1, 5, 2]|[10, 20, 30]|
|1 |4 |[1, 2, 3]|[10, 20, 30]|
|2 |4 |[5, 6, 7]|[10, 20, 30]|
+------+------+---------+------------+

相关问题