spark分类预测中的索引回溯概率

xxe27gdn  于 2021-05-27  发布在  Spark
关注(0)|答案(1)|浏览(343)

我试图在spark的分类预测中索引预测概率。我有一个多类分类器的输入数据,标签有红、绿、蓝。
输入Dataframe:

+-----+---+---+---+---+---+---+---+---+---+----+----+----+----+
|  _c0|_c1|_c2|_c3|_c4|_c5|_c6|_c7|_c8|_c9|_c10|_c11|_c12|_c13|
+-----+---+---+---+---+---+---+---+---+---+----+----+----+----+
|  red|  0|  0|  0|  1|  0|  0|  0|  2|  3|   2|   2|   0|   5|
|green|  5|  6|  0| 14|  0|  5|  0| 95|  2| 120|   0|   0|   9|
|green|  6|  1|  0|  3|  0|  4|  0| 21| 22|  11|   0|   0|  23|
|  red|  0|  1|  0|  1|  0|  4|  0|  1|  4|   2|   0|   0|   5|
|green| 37|  9|  0| 19|  0| 31|  0| 87|  9| 108|   0|   0| 170|
+-----+---+---+---+---+---+---+---+---+---+----+----+----+----+
only showing top 5 rows

我使用stringindexer索引标签列,使用vectorassembler从特征列创建特征向量。
分析的Dataframe:

+-----+--------------------+
|label|            features|
+-----+--------------------+
|  1.0|(13,[3,7,8,9,10,1...|
|  0.0|[5.0,6.0,0.0,14.0...|
|  0.0|[6.0,1.0,0.0,3.0,...|
|  1.0|(13,[1,3,5,7,8,9,...|
|  0.0|[37.0,9.0,0.0,19....|
+-----+--------------------+
only showing top 5 rows

利用该数据生成了一个随机森林分类模型。在查询时,我将提供特性列来预测标签及其概率。
查询Dataframe:

+---+---+---+---+---+---+---+---+---+---+----+----+----+
|_c0|_c1|_c2|_c3|_c4|_c5|_c6|_c7|_c8|_c9|_c10|_c11|_c12|
+---+---+---+---+---+---+---+---+---+---+----+----+----+
| 11| 11|  0| 23|  0|  7|  2| 70| 81| 76|   7|   0|  23|
|  4|  0|  0|  0|  0|  0|  2|  2|  3|  2|   7|   0|   2|
+---+---+---+---+---+---+---+---+---+---+----+----+----+

已分析的查询Dataframe:

+--------------------+--------------------+
|          queryValue|            features|
+--------------------+--------------------+
|11,11,0,23,0,7,2,...|[11.0,11.0,0.0,23...|
|4,0,0,0,0,0,2,2,3...|(13,[0,6,7,8,9,10...|
+--------------------+--------------------+

RFC模型的原始预测:

+--------------------+--------------------+--------------------+----------+
|          queryValue|            features|         probability|prediction|
+--------------------+--------------------+--------------------+----------+
|11,11,0,23,0,7,2,...|[11.0,11.0,0.0,23...|        [0.67, 0.32]|       0.0|
|4,0,0,0,0,0,2,2,3...|(13,[0,6,7,8,9,10...|        [0.05, 0.94]|       1.0|
+--------------------+--------------------+--------------------+----------+

在原始预测中,概率列是一个双精度数组,其概率在相应的类索引中。假设概率列中的一行为[0.67,0.32],则表示0.0类的概率为0.67,1.0类的概率为0.32。只有当标签为0,1,2。。。在本例中,当我使用indextostring将预测索引回原始标签时,概率列将毫无意义。
索引Dataframe:

+--------------------+--------------------+--------------------+----------+
|          queryValue|            features|         probability|prediction|
+--------------------+--------------------+--------------------+----------+
|11,11,0,23,0,7,2,...|[11.0,11.0,0.0,23...|        [0.67, 0.32]|     green|
|4,0,0,0,0,0,2,2,3...|(13,[0,6,7,8,9,10...|        [0.05, 0.94]|       red|
+--------------------+--------------------+--------------------+----------+

我想索引下面的概率列,

+--------------------+--------------------+--------------------------+----------+
|          queryValue|            features|              probability |prediction|
+--------------------+--------------------+--------------------------+----------+
|11,11,0,23,0,7,2,...|[11.0,11.0,0.0,23...|{"red":0.32,"green":0.67} |     green|
|4,0,0,0,0,0,2,2,3...|(13,[0,6,7,8,9,10...|{"red":0.94,"green":0.05} |       red|
+--------------------+--------------------+--------------------------+----------+

现在,我通过将dataframe转换为list来索引probability列。spark中是否有可用的特性转换器来实现这一点?

pqwbnv8z

pqwbnv8z1#

试图用下面的方法来解决这个问题-
我曾经 Iris data 解决这个问题。

示例输入(前5行)

+------------+-----------+------------+-----------+-----------+
|sepal_length|sepal_width|petal_length|petal_width|      label|
+------------+-----------+------------+-----------+-----------+
|         5.1|        3.5|         1.4|        0.2|Iris-setosa|
|         4.9|        3.0|         1.4|        0.2|Iris-setosa|
|         4.7|        3.2|         1.3|        0.2|Iris-setosa|
|         4.6|        3.1|         1.5|        0.2|Iris-setosa|
|         5.0|        3.6|         1.4|        0.2|Iris-setosa|
+------------+-----------+------------+-----------+-----------+

从stringindexermodel捕获带有索引的标签

你提到-
我使用stringindexer索引标签列,使用vectorassembler从特征列创建特征向量。
我们将使用 stringIndexerModel 来这里拿 Map[index, Label] ```
// in my case, StringIndexerModel is referenced as labelIndexer
val labelToIndex = labelIndexer.labels.zipWithIndex.map(_.swap).toMap
println(labelToIndex)

结果-

Map(0 -> Iris-setosa, 1 -> Iris-versicolor, 2 -> Iris-virginica)


### 使用此Map生成概率json

import org.apache.spark.ml.linalg.Vector
val mapToLabel = udf((vector: Vector) => vector.toArray.zipWithIndex.toMap.map{
case(prob, index) => labelToIndex(index) -> prob
})
predictions.select(
col("features"),
col("probability"),
to_json(mapToLabel(col("probability"))).as("probability_json"),
col("prediction"),
col("predictedLabel"))
.show(5,false)

结果-

+-------------------------------------+------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------+----------+--------------+
|features |probability |probability_json |prediction|predictedLabel|
+-------------------------------------+------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------+----------+--------------+
|(123,[0,37,82,101],[1.0,1.0,1.0,1.0])|[0.7094347002635046,0.174338768115942,0.11622653162055337] |{"Iris-setosa":0.7094347002635046,"Iris-versicolor":0.174338768115942,"Iris-virginica":0.11622653162055337} |0.0 |Iris-setosa |
|(123,[0,39,58,101],[1.0,1.0,1.0,1.0])|[0.7867074275362319,0.12433876811594202,0.0889538043478261] |{"Iris-setosa":0.7867074275362319,"Iris-versicolor":0.12433876811594202,"Iris-virginica":0.0889538043478261} |0.0 |Iris-setosa |
|(123,[0,39,62,107],[1.0,1.0,1.0,1.0])|[0.5159492704509036,0.2794443583750028,0.2046063711740936] |{"Iris-setosa":0.5159492704509036,"Iris-versicolor":0.2794443583750028,"Iris-virginica":0.2046063711740936} |0.0 |Iris-setosa |
|(123,[2,39,58,101],[1.0,1.0,1.0,1.0])|[0.7822379507920459,0.12164981462756994,0.09611223458038423]|{"Iris-setosa":0.7822379507920459,"Iris-versicolor":0.12164981462756994,"Iris-virginica":0.09611223458038423}|0.0 |Iris-setosa |
|(123,[2,43,62,101],[1.0,1.0,1.0,1.0])|[0.7049652235193186,0.17164981462756992,0.1233849618531115] |{"Iris-setosa":0.7049652235193186,"Iris-versicolor":0.17164981462756992,"Iris-virginica":0.1233849618531115} |0.0 |Iris-setosa |
+-------------------------------------+------------------------------------------------------------+-------------------------------------------------------------------------------------------------------------+----------+--------------+
only showing top 5 rows

相关问题