我有两个10行的Dataframe。
df1.show()
+-------------------+------------------+--------+-------+
| lat| lon|duration|stop_id|
+-------------------+------------------+--------+-------+
| -6.23748779296875| 106.6937255859375| 247| 0|
| -6.23748779296875| 106.6937255859375| 2206| 1|
| -6.23748779296875| 106.6937255859375| 609| 2|
| 0.5733972787857056|101.45503234863281| 16879| 3|
| 0.5733972787857056|101.45503234863281| 4680| 4|
| -6.851855278015137|108.64261627197266| 164| 5|
| -6.851855278015137|108.64261627197266| 220| 6|
| -6.851855278015137|108.64261627197266| 1669| 7|
|-0.9033176600933075|100.41548919677734| 30811| 8|
|-0.9033176600933075|100.41548919677734| 23404| 9|
+-------------------+------------------+--------+-------+
我想添加列 bank_and_post
从 df2
至 df1
. df2
来自函数。
def assignPtime(x, mu, std):
mu = mu.values[0]
std = std.values[0]
x1 = np.random.normal(mu, std, 100000)
a1, b1 = np.histogram(x1, density=True)
val = x / 60
for k, v in enumerate(val):
prob = 0
for i,j in enumerate(b1[:-1]):
v1 = b1[i]
v2 = b1[i+1]
if (v >= v1) and (v < v2):
prob = a1[i]
x[k] = prob
return x
ff = pandas_udf(assignPtime, returnType=DoubleType())
df2 = df1.select(ff(col("duration"), lit(15), lit(15)).alias("ptime_bank_and_post"))
df2.show()
+--------------------+
| bank_and_post|
+--------------------+
|0.021806558032484918|
|0.014366417828826784|
|0.021806558032484918|
| 0.0|
| 0.0|
|0.021806558032484918|
|0.021806558032484918|
|0.014366417828826784|
| 0.0|
| 0.0|
+--------------------+
如果我尝试
df2 = df2.withColumn("stop_id", monotonically_increasing_id())
我得到了错误
ValueError: assignment destination is read-only
1条答案
按热度按时间06odsfpq1#
使用
row_number()
窗口函数将新列添加到df1,df2
dataframes然后连接row\u number列上的dataframes。Example:
1. Using row_number function:
```df1=spark.createDataFrame([(0,),(1,),(2,),(3,),(4,),(5,),(6,),(7,),(8,),(9,)],["stop_id"])
df2=spark.createDataFrame([("0.021806558032484918",),("0.014366417828826784",),("0.021806558032484918",),(" 0.0",),(" 0.0",),("0.021806558032484918",),("0.021806558032484918",),("0.014366417828826784",),(" 0.0",),(" 0.0",)],["bank_and_post"])
from pyspark.sql import *
from pyspark.sql.functions import *
w=Window.orderBy(lit(1))
df4=df2.withColumn("rn",row_number().over(w)-1)
df3=df1.withColumn("rn",row_number().over(w)-1)
df3.join(df4,["rn"]).drop("rn").show()
+-------+--------------------+
|stop_id| bank_and_post|
+-------+--------------------+
| 0|0.021806558032484918|
| 1|0.014366417828826784|
| 2|0.021806558032484918|
| 3| 0.0|
| 4| 0.0|
| 5|0.021806558032484918|
| 6|0.021806558032484918|
| 7|0.014366417828826784|
| 8| 0.0|
| 9| 0.0|
+-------+--------------------+
`2. Using monotonically_increasing_id() function:`
df1.withColumn("mid",monotonically_increasing_id()).
join(df2.withColumn("mid",monotonically_increasing_id()),["mid"]).
drop("mid").
orderBy("stop_id").
show()
+-------+--------------------+
|stop_id| bank_and_post|
+-------+--------------------+
| 0|0.021806558032484918|
| 1|0.014366417828826784|
| 2|0.021806558032484918|
| 3| 0.0|
| 4| 0.0|
| 5|0.021806558032484918|
| 6|0.021806558032484918|
| 7|0.014366417828826784|
| 8| 0.0|
| 9| 0.0|
+-------+--------------------+
`3. Using row_number() on monotonically_increasing_id() function:`
w=Window.orderBy("mid")
df3=df1.withColumn("mid",monotonically_increasing_id()).withColumn("rn",row_number().over(w) - 1)
df4=df2.withColumn("mid",monotonically_increasing_id()).withColumn("rn",row_number().over(w) - 1)
df3.join(df4,["rn"]).drop("rn","mid").show()
+-------+--------------------+
|stop_id| bank_and_post|
+-------+--------------------+
| 0|0.021806558032484918|
| 1|0.014366417828826784|
| 2|0.021806558032484918|
| 3| 0.0|
| 4| 0.0|
| 5|0.021806558032484918|
| 6|0.021806558032484918|
| 7|0.014366417828826784|
| 8| 0.0|
| 9| 0.0|
+-------+--------------------+
`4. Using zipWithIndex:`
df3=df1.rdd.zipWithIndex().toDF().select("_1.","_2")
df4=df2.rdd.zipWithIndex().toDF().select("_1.","_2")
df3.join(df4,["_2"]).drop("_2").orderBy("stop_id").show()
+-------+--------------------+
|stop_id| bank_and_post|
+-------+--------------------+
| 0|0.021806558032484918|
| 1|0.014366417828826784|
| 2|0.021806558032484918|
| 3| 0.0|
| 4| 0.0|
| 5|0.021806558032484918|
| 6|0.021806558032484918|
| 7|0.014366417828826784|
| 8| 0.0|
| 9| 0.0|
+-------+--------------------+