pysparkDataframe对所有列进行前向填充

30byixjq  于 2021-05-27  发布在  Spark
关注(0)|答案(1)|浏览(423)

我有以下问题。我有一个数据集来跟踪状态的变化。

id  valid  eventdate
 1  False 2020-05-01
 1   True 2020-05-06
 2   True 2020-05-04
 2  False 2020-05-07
 2   True 2020-05-09
 3  False 2020-05-11

目标:

SELECT valid FROM table WHERE id = 1 AND eventdate = "2020-05-05"

我需要知道在任何给定的日期(在开始和今天)的状态是一个给定的一天。例如,例如 id 1有效期仍然有效 False 五月五日。
在Pandas中,我有一个这样的解决方案,我使用 pivot 以及 ffill 用于填充空值。我使用一个melt将它重新制作成一个三列的Dataframe。

from datetime import datetime
import pandas as pd

test_data = [
  [1,"False","2020-05-01"],
  [1,"True","2020-05-06"],
  [2,"True","2020-05-04"],
  [2,"False","2020-05-07"],
  [2,"True","2020-05-09"],
  [3,"False","2020-05-11"]
]

# Create inputframe

df = pd.DataFrame(test_data, columns=['id', 'valid', 'eventdate'])
df['id'] = df['id'].astype(str)
df['valid'] = df['valid'] == "True"
df['eventdate'] = pd.to_datetime(df['eventdate'])
print(df.head(6))

# id  valid  eventdate

# 0  1  False 2020-05-01

# 1  1   True 2020-05-06

# 2  2   True 2020-05-04

# 3  2  False 2020-05-07

# 4  2   True 2020-05-09

# 5  3  False 2020-05-11

# Create full time range as frame

timeframe = pd.date_range(start=min(df['eventdate']),
                          end=datetime.now().date()).to_frame().reset_index(drop=True).rename(columns={0: 'eventdate'})
print(timeframe.head())

# eventdate

# 0 2020-05-01

# 1 2020-05-02

# 2 2020-05-03

# 3 2020-05-04

# 4 2020-05-05

# Merge timeframe into original frame

df = df.merge(timeframe,
              left_on='eventdate',
              right_on='eventdate',
              how='right')
print(df.sort_values('eventdate').head())

# id  valid  eventdate

# 0    1  False 2020-05-01

# 6  NaN    NaN 2020-05-02

# 7  NaN    NaN 2020-05-03

# 2    2   True 2020-05-04

# 8  NaN    NaN 2020-05-05

# 1. Pivot to get dates on rows and ids as columns

# 2. Forward fill values per id

# 3. Fill remaining NaNs with False

df = df.pivot(index='eventdate',
              columns='id',
              values='valid')\
       .fillna(method='ffill')\
       .fillna(False)
print(df.head())

# id            NaN      1      2      3

# eventdate

# 2020-05-01  False  False  False  False

# 2020-05-02  False  False  False  False

# 2020-05-03  False  False  False  False

# 2020-05-04  False  False   True  False

# 2020-05-05  False  False   True  False

# Drop NaN column and reset the index

df = df.loc[:, df.columns.notnull()].reset_index()

# Melt the columns back

out = pd.melt(df,
              id_vars='eventdate',
              value_name='valid')
print(out.head(10))

# eventdate id  valid

# 0 2020-05-01  1  False

# 1 2020-05-02  1  False

# 2 2020-05-03  1  False

# 3 2020-05-04  1  False

# 4 2020-05-05  1  False

# 5 2020-05-06  1   True

# 6 2020-05-07  1   True

# 7 2020-05-08  1   True

# 8 2020-05-09  1   True

# 9 2020-05-10  1   True

我正在努力实现同样的Spark,但向前填补不存在。我知道如何达到最新的地位 id :

w = Window().partitionBy("id").orderBy(F.col("eventdate").desc())
df.withColumn("rn", F.row_number().over(w)) \
  .where(F.col("rn") == 1) \
  .selectExpr("id", "valid", "eventdate AS last_change") \
  .dropna() \
  .show()

旋转可通过以下方式完成:

df\
.select(["id", "valid", "eventdate"])\
.groupBy(["eventdate"])\
.pivot("id")\
.agg(F.min("valid"))\
.drop('null')\
.sort('eventdate')\
.show()

为了进行正向填充,我将数据集限制为一个 id :

import sys
from datetime import datetime
import pyspark.sql.functions as F
from pyspark.sql import Window

test_data = [
  [1,"False","2020-05-01"],
  [1,"True","2020-05-06"],
  [2,"True","2020-05-04"],
  [2,"False","2020-05-07"],
  [2,"True","2020-05-09"],
  [3,"False","2020-05-11"]
]

# Create dataframe

df = sc\
  .parallelize(test_data)\
  .toDF(("id", "valid", "eventdate"))\
  .withColumn("eventdate", F.to_date(F.to_timestamp("eventdate")))\
  .withColumn("valid", F.when(F.col("valid") == "True", 1).otherwise(0))
df.createOrReplaceTempView("df")

# Create event frame

event_dates = spark.sql("SELECT sequence(min(eventdate), CURRENT_DATE(), interval 1 day) as eventdate FROM df")\
                   .withColumn("eventdate",
                               F.explode(F.col("eventdate")))

# Join dates and data

df = df.join(event_dates, on='eventdate', how='right')

df2 = df.where(df.id == 1)\
  .join(event_dates, on='eventdate', how='right')\
  .withColumn('id', F.lit(1))

# df2.sort('eventdate').show()

# +----------+---+-----+

# | eventdate| id|valid|

# +----------+---+-----+

# |2020-05-01|  1|    0|

# |2020-05-02|  1| null|

# |2020-05-03|  1| null|

# |2020-05-04|  1| null|

# |2020-05-05|  1| null|

# |2020-05-06|  1|    1|

# |2020-05-07|  1| null|

# |2020-05-08|  1| null|

# |2020-05-09|  1| null|

# |2020-05-10|  1| null|

# |2020-05-11|  1| null|

# |2020-05-12|  1| null|

# |2020-05-13|  1| null|

# +----------+---+-----+

# Forward fill

window = Window.partitionBy('id')\
               .orderBy('eventdate')\
               .rowsBetween(-sys.maxsize, 0)

# Set filter

read_last = F.last(df2['valid'], ignorenulls=True).over(window)
df2.withColumn("ffill", read_last).show()

# +----------+---+-----+-----+

# | eventdate| id|valid|ffill|

# +----------+---+-----+-----+

# |2020-05-01|  1|    0|    0|

# |2020-05-02|  1| null|    0|

# |2020-05-03|  1| null|    0|

# |2020-05-04|  1| null|    0|

# |2020-05-05|  1| null|    0|

# |2020-05-06|  1|    1|    1|

# |2020-05-07|  1| null|    1|

# |2020-05-08|  1| null|    1|

# |2020-05-09|  1| null|    1|

# |2020-05-10|  1| null|    1|

# |2020-05-11|  1| null|    1|

# |2020-05-12|  1| null|    1|

# |2020-05-13|  1| null|    1|

# +----------+---+-----+-----+

我认为第一件事是这个回答问题的方法是否正确。做 pivot 将创建一个包含少数列的长表,同时存储大量冗余数据。spark不是解决问题的合适工具,或者更好,问题本身不适合使用spark。我知道理想情况下,您需要使用并行处理,也许还需要广播 timeframe 并计算每个节点的正向填充 id 每个节点?
是否最好使用一些不同的方法,例如,存储 enddate 在查询时使用以下内容:

id  valid  eventdate enddate
 1  False 2020-05-01 2020-05-06
 1   True 2020-05-06 2999-12-31
 2   True 2020-05-04 2020-05-07
 2  False 2020-05-07 2020-05-08
 2   True 2020-05-09 2999-12-31
 3  False 2020-05-11 2999-12-31

以及

SELECT valid FROM table WHERE id = 1 AND "2020-05-05" between eventdate and enddate

请让我知道spark方法是否有用,对于这样一个稀疏的数据集,在任何给定的日历状态下查找状态的最佳方法是什么?
谢谢您。

ezykj2lf

ezykj2lf1#

为了 spark2.4+ 你可以用 sequence ,然后 explode 它需要向前填充。我还以为你的约会是这样的 yyyy-MM-dd ```
df.show() #sample dataframe

+---+-----+----------+

| id|valid| eventdate|

+---+-----+----------+

| 1|false|2020-05-01|

| 1| true|2020-05-06|

| 2| true|2020-05-04|

| 2|false|2020-05-07|

| 2| true|2020-05-09|

| 3|false|2020-05-11|

+---+-----+----------+

from pyspark.sql import functions as F
from pyspark.sql.window import Window

w=Window().partitionBy("id").orderBy(F.to_date("eventdate","yyyy-MM-dd"))

df.withColumn("lead", F.lead("eventdate").over(w))
.withColumn("sequence", F.when(F.col("lead").isNotNull(),
F.expr("""sequence(to_date(eventdate),date_sub(to_date(lead),1), interval 1 day)"""))
.otherwise(F.array("eventdate")))
.select("id","valid",F.explode("sequence").alias("eventdate"))
.show(truncate=False)

+---+-----+----------+

|id |valid|eventdate |

+---+-----+----------+

|1 |false|2020-05-01|

|1 |false|2020-05-02|

|1 |false|2020-05-03|

|1 |false|2020-05-04|

|1 |false|2020-05-05|

|1 |true |2020-05-06|

|3 |false|2020-05-11|

|2 |true |2020-05-04|

|2 |true |2020-05-05|

|2 |true |2020-05-06|

|2 |false|2020-05-07|

|2 |false|2020-05-08|

|2 |true |2020-05-09|

+---+-----+----------+

相关问题