spark无法读取avroparquetwriter编写的Parquet文件中的十进制列

cyej8jka  于 2021-05-27  发布在  Spark
关注(0)|答案(1)|浏览(610)

我有一些Parquet文件编写使用avroparquetwriter(从Kafka连接s3连接器)。
文件中的一列 aseg_lat 具有架构 DECIMAL(9, 7) .
我可以用pyarrow和prestosql很好地阅读这个专栏。
试图通过运行在aws emr上的spark 3.0.0读取它,我得到以下错误:

scala> var df2 = df.select("aseg_lat")
df2: org.apache.spark.sql.DataFrame = [aseg_lat: decimal(9,7)]

scala> df2.show()
20/08/25 12:03:35 WARN package: Truncated the string representation of a plan since it was too large. This behavior can be adjusted by setting 'spark.sql.debug.maxToStringFields'.
20/08/25 12:04:35 WARN TaskSetManager: Lost task 0.0 in stage 1.0 (TID 448, ip-172-30-2-50.ec2.internal, executor 8): org.apache.spark.sql.execution.QueryExecutionException: Parquet column cannot be converted in file <redacted>. Column: [aseg_lat], Expected: decimal(9,7), Found: BINARY
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:213)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:122)
    at org.apache.spark.sql.execution.FileSourceScanExec$$anon$1.hasNext(DataSourceScanExec.scala:559)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.columnartorow_nextBatch_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:729)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:345)
    at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872)
    at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:127)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:444)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:447)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.sql.execution.datasources.SchemaColumnConvertNotSupportedException
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.constructConvertNotSupportedException(VectorizedColumnReader.java:298)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBinaryBatch(VectorizedColumnReader.java:603)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBatch(VectorizedColumnReader.java:268)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:285)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:183)
    at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:122)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:207)
    ... 20 more

20/08/25 12:04:38 ERROR TaskSetManager: Task 0 in stage 1.0 failed 4 times; aborting job
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 4 times, most recent failure: Lost task 0.3 in stage 1.0 (TID 451, ip-172-30-2-50.ec2.internal, executor 5): org.apache.spark.sql.execution.QueryExecutionException: Parquet column cannot be converted in file <redacted>. Column: [aseg_lat], Expected: decimal(9,7), Found: BINARY
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:213)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:122)
    at org.apache.spark.sql.execution.FileSourceScanExec$$anon$1.hasNext(DataSourceScanExec.scala:559)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.columnartorow_nextBatch_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:729)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:345)
    at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872)
    at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:127)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:444)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:447)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.sql.execution.datasources.SchemaColumnConvertNotSupportedException
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.constructConvertNotSupportedException(VectorizedColumnReader.java:298)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBinaryBatch(VectorizedColumnReader.java:603)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBatch(VectorizedColumnReader.java:268)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:285)
    at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:183)
    at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:122)
    at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:207)
    ... 20 more

Driver stacktrace:
  at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2175)
  at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2124)
  at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2123)
  at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
  at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
  at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2123)
  at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:990)
  at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:990)
  at scala.Option.foreach(Option.scala:407)
  at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:990)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2355)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2304)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2293)
  at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
  at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:792)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2093)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2114)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2133)
  at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:472)
  at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:425)
  at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:47)
  at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3664)
  at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2737)
  at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3655)
  at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:106)
  at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:207)
  at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:88)
  at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:763)
  at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
  at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3653)
  at org.apache.spark.sql.Dataset.head(Dataset.scala:2737)
  at org.apache.spark.sql.Dataset.take(Dataset.scala:2944)
  at org.apache.spark.sql.Dataset.getRows(Dataset.scala:301)
  at org.apache.spark.sql.Dataset.showString(Dataset.scala:338)
  at org.apache.spark.sql.Dataset.show(Dataset.scala:864)
  at org.apache.spark.sql.Dataset.show(Dataset.scala:823)
  at org.apache.spark.sql.Dataset.show(Dataset.scala:832)
  ... 47 elided
Caused by: org.apache.spark.sql.execution.QueryExecutionException: Parquet column cannot be converted in file <redacted>. Column: [aseg_lat], Expected: decimal(9,7), Found: BINARY
  at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:213)
  at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:122)
  at org.apache.spark.sql.execution.FileSourceScanExec$$anon$1.hasNext(DataSourceScanExec.scala:559)
  at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.columnartorow_nextBatch_0$(Unknown Source)
  at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
  at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
  at org.apache.spark.sql.execution.WholeStageCodegenExec$$anon$1.hasNext(WholeStageCodegenExec.scala:729)
  at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:345)
  at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872)
  at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872)
  at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
  at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
  at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
  at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
  at org.apache.spark.scheduler.Task.run(Task.scala:127)
  at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:444)
  at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
  at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:447)
  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
  at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.sql.execution.datasources.SchemaColumnConvertNotSupportedException
  at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.constructConvertNotSupportedException(VectorizedColumnReader.java:298)
  at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBinaryBatch(VectorizedColumnReader.java:603)
  at org.apache.spark.sql.execution.datasources.parquet.VectorizedColumnReader.readBatch(VectorizedColumnReader.java:268)
  at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextBatch(VectorizedParquetRecordReader.java:285)
  at org.apache.spark.sql.execution.datasources.parquet.VectorizedParquetRecordReader.nextKeyValue(VectorizedParquetRecordReader.java:183)
  at org.apache.spark.sql.execution.datasources.RecordReaderIterator.hasNext(RecordReaderIterator.scala:39)
  at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:122)
  at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:207)
  ... 20 more

我还试着通过设置 spark.sql.hive.convertMetastoreParquetfalse . 这样我就可以阅读 DECIMAL 列,但对于其他列(如时间戳)开始失败。

20/08/25 12:28:34 WARN DAGScheduler: Broadcasting large task binary with size 8.7 MiB
20/08/25 12:28:37 WARN TaskSetManager: Lost task 0.0 in stage 4.0 (TID 7, ip-172-30-2-50.ec2.internal, executor 6): java.lang.ClassCastException: org.apache.hadoop.io.LongWritable cannot be cast to org.apache.hadoop.hive.serde2.io.TimestampWritable
    at org.apache.hadoop.hive.serde2.objectinspector.primitive.WritableTimestampObjectInspector.getPrimitiveJavaObject(WritableTimestampObjectInspector.java:39)
    at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$14(TableReader.scala:468)
    at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$14$adapted(TableReader.scala:467)
    at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$18(TableReader.scala:493)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:346)
    at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872)
    at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:127)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:444)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:447)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

20/08/25 12:28:39 ERROR TaskSetManager: Task 0 in stage 4.0 failed 4 times; aborting job
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 4.0 failed 4 times, most recent failure: Lost task 0.3 in stage 4.0 (TID 10, ip-172-30-2-50.ec2.internal, executor 6): java.lang.ClassCastException: org.apache.hadoop.io.LongWritable cannot be cast to org.apache.hadoop.hive.serde2.io.TimestampWritable
    at org.apache.hadoop.hive.serde2.objectinspector.primitive.WritableTimestampObjectInspector.getPrimitiveJavaObject(WritableTimestampObjectInspector.java:39)
    at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$14(TableReader.scala:468)
    at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$14$adapted(TableReader.scala:467)
    at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$18(TableReader.scala:493)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
    at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
    at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:346)
    at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872)
    at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872)
    at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
    at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
    at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
    at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
    at org.apache.spark.scheduler.Task.run(Task.scala:127)
    at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:444)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:447)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
  at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2175)
  at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2124)
  at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2123)
  at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
  at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
  at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
  at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2123)
  at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:990)
  at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:990)
  at scala.Option.foreach(Option.scala:407)
  at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:990)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2355)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2304)
  at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2293)
  at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
  at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:792)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2093)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2114)
  at org.apache.spark.SparkContext.runJob(SparkContext.scala:2133)
  at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:472)
  at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:425)
  at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:47)
  at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3664)
  at org.apache.spark.sql.Dataset.$anonfun$head$1(Dataset.scala:2737)
  at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3655)
  at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:106)
  at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:207)
  at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:88)
  at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:763)
  at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
  at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3653)
  at org.apache.spark.sql.Dataset.head(Dataset.scala:2737)
  at org.apache.spark.sql.Dataset.take(Dataset.scala:2944)
  at org.apache.spark.sql.Dataset.getRows(Dataset.scala:301)
  at org.apache.spark.sql.Dataset.showString(Dataset.scala:338)
  at org.apache.spark.sql.Dataset.show(Dataset.scala:864)
  at org.apache.spark.sql.Dataset.show(Dataset.scala:823)
  at org.apache.spark.sql.Dataset.show(Dataset.scala:832)
  ... 47 elided
Caused by: java.lang.ClassCastException: org.apache.hadoop.io.LongWritable cannot be cast to org.apache.hadoop.hive.serde2.io.TimestampWritable
  at org.apache.hadoop.hive.serde2.objectinspector.primitive.WritableTimestampObjectInspector.getPrimitiveJavaObject(WritableTimestampObjectInspector.java:39)
  at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$14(TableReader.scala:468)
  at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$14$adapted(TableReader.scala:467)
  at org.apache.spark.sql.hive.HadoopTableReader$.$anonfun$fillObject$18(TableReader.scala:493)
  at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
  at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
  at scala.collection.Iterator$$anon$10.next(Iterator.scala:459)
  at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:346)
  at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:872)
  at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:872)
  at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
  at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
  at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
  at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
  at org.apache.spark.scheduler.Task.run(Task.scala:127)
  at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:444)
  at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
  at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:447)
  at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
  at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
  at java.lang.Thread.run(Thread.java:748)

另一个观察结果是 DECIMAL(9, 7)DECIMAL(x, 7) (其中x>19)允许spark读取列,但这对我来说不是一个可行的解决方案,因为我有多个tbs的历史数据是用 DECIMAL(9, 7) 我需要重新处理。
我怎么读 DECIMAL 作者 AvroParquetWriter 来自spark?

bz4sfanl

bz4sfanl1#

禁用spark的矢量化Parquet读取器可以让spark毫无问题地读取这些列。这在spark 3.0.0和spark 2.4.4上都得到了验证。
i、 e.设置 spark.sql.parquet.enableVectorizedReaderfalse 在sparksession或spark默认值中。
感谢@mazaneicha建议尝试这个选项。

相关问题