我可以使用regexp\u replace或类似的工具用一行代码替换pysparkDataframe列中的多个值吗?

ovfsdjhp  于 2021-05-27  发布在  Spark
关注(0)|答案(1)|浏览(331)

我可以使用regexp\u replace或其他等效工具用一行代码替换pysparkDataframe列中的多个值吗?
以下是创建我的Dataframe的代码:

from pyspark import SparkContext, SparkConf, SQLContext
from datetime import datetime

sc = SparkContext().getOrCreate()
sqlContext = SQLContext(sc)

data1 = [
  ('George', datetime(2010, 3, 24, 3, 19, 58), 13),
  ('George', datetime(2020, 9, 24, 3, 19, 6), 8),
  ('George', datetime(2009, 12, 12, 17, 21, 30), 5),
  ('Micheal', datetime(2010, 11, 22, 13, 29, 40), 12),
  ('Maggie', datetime(2010, 2, 8, 3, 31, 23), 8),
  ('Ravi', datetime(2009, 1, 1, 4, 19, 47), 2),
  ('Xien', datetime(2010, 3, 2, 4, 33, 51), 3),
]

df1 = sqlContext.createDataFrame(data1, ['name', 'trial_start_time', 'purchase_time'])
df1.show(truncate=False)

以下是Dataframe:

+-------+-------------------+-------------+
|name   |trial_start_time   |purchase_time|
+-------+-------------------+-------------+
|George |2010-03-24 07:19:58|13           |
|George |2020-09-24 07:19:06|8            |
|George |2009-12-12 22:21:30|5            |
|Micheal|2010-11-22 18:29:40|12           |
|Maggie |2010-02-08 08:31:23|8            |
|Ravi   |2009-01-01 09:19:47|2            |
|Xien   |2010-03-02 09:33:51|3            |
+-------+-------------------+-------------+

下面是替换一个字符串的工作示例:

from pyspark.sql.functions import regexp_replace, regexp_extract, col
df1.withColumn("name", regexp_replace('name', "Ravi", "Ravi_renamed")).show()

以下是输出:

+------------+-------------------+-------------+
|        name|   trial_start_time|purchase_time|
+------------+-------------------+-------------+
|      George|2010-03-24 07:19:58|           13|
|      George|2020-09-24 07:19:06|            8|
|      George|2009-12-12 22:21:30|            5|
|     Micheal|2010-11-22 18:29:40|           12|
|      Maggie|2010-02-08 08:31:23|            8|
|Ravi_renamed|2009-01-01 09:19:47|            2|
|        Xien|2010-03-02 09:33:51|            3|
+------------+-------------------+-------------+

在pandas中,我可以用lambda表达式替换一行代码中的多个字符串:

df1[name].apply(lambda x: x.replace('George','George_renamed1').replace('Ravi', 'Ravi_renamed2')

我不确定这是否可以在pyspark中用regexp\u替换。也许是另一种选择?当我读到在pyspark中使用lambda表达式时,似乎我必须创建udf函数(看起来有点长)。但我很好奇,我是否可以简单地在一行代码中对多个字符串运行某种类型的regex表达式。

xjreopfe

xjreopfe1#

这就是你要找的:

使用when()(最可读)

df1.withColumn('name', 
               when(col('name') == 'George', 'George_renamed1')
               .when(col('name') == 'Ravi', 'Ravi_renamed2')
               .otherwise(col('name'))
              )

使用mapping expr(不太明确,但如果有很多值要替换,就很方便)

df1 = df1.withColumn('name', F.expr("coalesce(map('George', 'George_renamed1', 'Ravi', 'Ravi_renamed2')[name], name)"))

或者如果你已经有一个列表可以使用。 name_changes = ['George', 'George_renamed1', 'Ravi', 'Ravi_renamed2'] ```

str()[1:-1] to convert list to string and remove [ ]

df1 = df1.withColumn('name', expr(f'coalesce(map({str(name_changes)[1:-1]})[name], name)'))

但只使用pyspark导入的函数

mapping_expr = create_map([lit(x) for x in name_changes])

df1 = df1.withColumn('name', coalesce(mapping_expr[df1['name']], 'name'))


#### 结果

df1.withColumn('name', F.expr("coalesce(map('George', 'George_renamed1', 'Ravi', 'Ravi_renamed2')[name],name)")).show()
+---------------+-------------------+-------------+
| name| trial_start_time|purchase_time|
+---------------+-------------------+-------------+
|George_renamed1|2010-03-24 03:19:58| 13|
|George_renamed1|2020-09-24 03:19:06| 8|
|George_renamed1|2009-12-12 17:21:30| 5|
| Micheal|2010-11-22 13:29:40| 12|
| Maggie|2010-02-08 03:31:23| 8|
| Ravi_renamed2|2009-01-01 04:19:47| 2|
| Xien|2010-03-02 04:33:51| 3|
+---------------+-------------------+-------------+

相关问题