并行spark流在Yarnemr中的应用

qlvxas9a  于 2021-05-27  发布在  Hadoop
关注(0)|答案(0)|浏览(218)

我在emr上运行并行spark流作业时遇到了一个问题。yarn被配置为使用capacity scheduler,并配置了3个队列a、b、c。
我提交第一个流媒体 job A 进入 queue A 而且运行良好。
几分钟后,我提交了第二份 job B 进入 queue B .
我一投降 job B , job A 停止运行,emrYarn控制台显示挂起的容器中出现峰值,并且 job B 开始运转良好。
这两个应用程序都按预期提交到正确的队列中,并且在队列容量内运行良好。
这是我的命令。

spark-submit --name "A" \
    --master yarn \
    --queue A \
    --deploy-mode client \
    --executor-cores 2 \
    --driver-memory 2G \
    --executor-memory 1G \
    --conf spark.dynamicAllocation.enabled=true \
    --conf spark.shuffle.service.enabled=true \
    --conf spark.dynamicAllocation.minExecutors=1 \
    --conf spark.dynamicAllocation.maxExecutors=2 \
    --conf spark.dynamicAllocation.initialExecutors=1 \
    --conf spark.yarn.submit.waitAppCompletion=false 
    --class test test.jar

即使在作业a被卡住之后,spark streaming查询进度也会不断更新:
{“event”:“org.apache.spark.sql.streaming.querylistener$queryprogressent”,“progress”:{“id”:“047d9837-c493-4adf-b8ff-c916ed67461f”,“runid”:“f02114ce-30a3-4678-bb48-a32b68d853be”,“name”:null,“timestamp”:“2019-10-26t07:03:08.382z”,“batchid”:184,“durationms”:{“triggerexecution”:0,“getoffset”:0},“eventtime”:{},“stateoperators”:[],“sources”:[{“description”:“mqttstreamsource[brokerurl:tcp://mqtt-tap.com:1883,主题:monitor/tenant/+clientid:stage],“startoffset”:“182”,“endoffset”:“182”,“numinputrows”:0,“inputrowspersecond”:0.0,“processedrowspersecond”:“nan”}],“sink”:{“description”:“foreachsink”}}
两个作业都可以在本地模式下正常运行。我检查了节点管理器日志,没有发现任何错误。问题只发生在客户机/集群模式下。请建议如何调试这个问题。
编辑:添加了计划程序设置。

<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->
<configuration>

  <property>
    <name>yarn.scheduler.capacity.maximum-applications</name>
    <value>10000</value>
    <description>
      Maximum number of applications that can be pending and running.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
    <value>0.5</value>
    <description>
      Maximum percent of resources in the cluster which can be used to run 
      application masters i.e. controls number of concurrent running
      applications.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.resource-calculator</name>
    <value>org.apache.hadoop.yarn.util.resource.DefaultResourceCalculator</value>
    <description>
      The ResourceCalculator implementation to be used to compare 
      Resources in the scheduler.
      The default i.e. DefaultResourceCalculator only uses Memory while
      DominantResourceCalculator uses dominant-resource to compare 
      multi-dimensional resources such as Memory, CPU etc.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.queues</name>
    <value>alpha,beta,default</value>
    <description>
      The queues at the this level (root is the root queue).
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.alpha.capacity</name>
    <value>50</value>
    <description>Default queue target capacity.</description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.beta.capacity</name>
    <value>30</value>
    <description>Default queue target capacity.</description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.capacity</name>
    <value>20</value>
    <description>Default queue target capacity.</description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.user-limit-factor</name>
    <value>1</value>
    <description>
      Default queue user limit a percentage from 0.0 to 1.0.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.alpha.user-limit-factor</name>
    <value>1</value>
    <description>
      Default queue user limit a percentage from 0.0 to 1.0.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.beta.user-limit-factor</name>
    <value>1</value>
    <description>
      Default queue user limit a percentage from 0.0 to 1.0.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.maximum-capacity</name>
    <value>20</value>
    <description>
      The maximum capacity of the default queue. 
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.alpha.maximum-capacity</name>
    <value>50</value>
    <description>
      The maximum capacity of the default queue. 
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.beta.maximum-capacity</name>
    <value>30</value>
    <description>
      The maximum capacity of the default queue. 
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.state</name>
    <value>RUNNING</value>
    <description>
      The state of the default queue. State can be one of RUNNING or STOPPED.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.alpha.state</name>
    <value>RUNNING</value>
    <description>
      The state of the default queue. State can be one of RUNNING or STOPPED.
    </description>
  </property>

    <property>
    <name>yarn.scheduler.capacity.root.beta.state</name>
    <value>RUNNING</value>
    <description>
      The state of the default queue. State can be one of RUNNING or STOPPED.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.acl_submit_applications</name>
    <value>*</value>
    <description>
      The ACL of who can submit jobs to the default queue.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.acl_administer_queue</name>
    <value>*</value>
    <description>
      The ACL of who can administer jobs on the default queue.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.node-locality-delay</name>
    <value>40</value>
    <description>
      Number of missed scheduling opportunities after which the CapacityScheduler 
      attempts to schedule rack-local containers. 
      Typically this should be set to number of nodes in the cluster, By default is setting 
      approximately number of nodes in one rack which is 40.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.queue-mappings</name>
    <value></value>
    <description>
      A list of mappings that will be used to assign jobs to queues
      The syntax for this list is [u|g]:[name]:[queue_name][,next mapping]*
      Typically this list will be used to map users to queues,
      for example, u:%user:%user maps all users to queues with the same name
      as the user.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.queue-mappings-override.enable</name>
    <value>false</value>
    <description>
      If a queue mapping is present, will it override the value specified
      by the user? This can be used by administrators to place jobs in queues
      that are different than the one specified by the user.
      The default is false.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.per-node-heartbeat.maximum-offswitch-assignments</name>
    <value>1</value>
    <description>
      Controls the number of OFF_SWITCH assignments allowed
      during a node's heartbeat. Increasing this value can improve
      scheduling rate for OFF_SWITCH containers. Lower values reduce
      "clumping" of applications on particular nodes. The default is 1.
      Legal values are 1-MAX_INT. This config is refreshable.
    </description>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.accessible-node-labels</name>
    <value>*</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.accessible-node-labels.CORE.capacity</name>
    <value>100</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.accessible-node-labels</name>
    <value>*</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.default.accessible-node-labels.CORE.capacity</name>
    <value>20</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.alpha.accessible-node-labels.CORE.capacity</name>
    <value>50</value>
  </property>

  <property>
    <name>yarn.scheduler.capacity.root.beta.accessible-node-labels.CORE.capacity</name>
    <value>30</value>
  </property>

</configuration>

暂无答案!

目前还没有任何答案,快来回答吧!

相关问题