我对hadoop、spark和大数据领域还很陌生,我所做的就是建立一个简单的hadoop集群。
版本:
hadoop版本:2.7.0
带hadoop的spark版本:spark-2.3.3-bin-hadoop2.7
操作系统:windows 10
注意:我已使用存储库中的bin文件夹从spark\u home dir设置了bin文件夹https://github.com/s911415/apache-hadoop-3.1.0-winutils
hadoop配置:
core-site.xml文件
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
hdfs-site.xml文件
<configuration>
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///C:/hadoop-2.7.0/namenode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///C:/hadoop-2.7.0/datanode</value>
</property>
</configuration>
mapred-site.xml文件
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
yarn-site.xml文件
<configuration>
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
</property>
</configuration>
我按照以下步骤初始化并启动集群:
执行命令 hdfs namenode -format
初始化namenode dir
执行 start-dfs.cmd
启动hdfs环境
执行 start-yarn.cmd
启动Yarn管理器
我可以检查以下端口:
hdfs用户界面:http://localhost:50070
hadoop群集ui:http://localhost:8088
hadoop工作进程:http://localhost:8042
我应该如何在客户机模式下运行(以便能够在sparkshell中执行scala代码)?
我所做的就是逃跑 spark-shell.cmd --master yarn --deploy-mode client --driver-memory 1g --executor-memory 1g --executor-cores 1
在命令行中,但引发此异常:
PS C:\Users\razvan.parautiu> spark-shell.cmd --master yarn --deploy-mode client --driver-memory 1g --executor-memory 1g --executor-cores 1
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
2019-03-12 16:29:20 WARN Client:66 - Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
2019-03-12 16:29:40 ERROR SparkContext:91 - Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:89)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:63)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:500)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2493)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:934)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:925)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:925)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:103)
at $line3.$read$$iw$$iw.<init>(<console>:15)
at $line3.$read$$iw.<init>(<console>:43)
at $line3.$read.<init>(<console>:45)
at $line3.$read$.<init>(<console>:49)
at $line3.$read$.<clinit>(<console>)
at $line3.$eval$.$print$lzycompute(<console>:7)
at $line3.$eval$.$print(<console>:6)
at $line3.$eval.$print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.apply(SparkILoop.scala:79)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.apply(SparkILoop.scala:79)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SparkILoop.scala:79)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79)
at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:91)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:78)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:77)
at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:110)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
at org.apache.spark.repl.Main$.doMain(Main.scala:76)
at org.apache.spark.repl.Main$.main(Main.scala:56)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:894)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:198)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:228)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:137)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
2019-03-12 16:29:40 WARN YarnSchedulerBackend$YarnSchedulerEndpoint:66 - Attempted to request executors before the AM has registered!
2019-03-12 16:29:40 WARN MetricsSystem:66 - Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:89)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:63)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:500)
at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2493)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:934)
at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:925)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:925)
at org.apache.spark.repl.Main$.createSparkSession(Main.scala:103)
... 55 elided
<console>:14: error: not found: value spark
import spark.implicits._
^
<console>:14: error: not found: value spark
import spark.sql
^
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 2.3.3
/_/
Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_202)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
在stackoverflow上也有类似的问题,但是对于其他spark和hadoop版本有不同的解决方案。
暂无答案!
目前还没有任何答案,快来回答吧!