基于时间戳值的流和处理数据(使用kafka和spark流)

6jjcrrmo  于 2021-05-29  发布在  Spark
关注(0)|答案(1)|浏览(1618)

我会尽量简化我要解决的问题。我有一个从json文件读取的雇员数据流,其模式如下:

StructType([ \
  StructField("timeStamp", TimestampType()),\
  StructField("emp_id", LongType()),\
  StructField("on_duty", LongType()) ])

# on_duty is an int boolean-> 0,1

样品:

{"timeStamp": 1514765160, "emp_id": 12471979, "on_duty": 0}
{"timeStamp": 1514765161, "emp_id": 12472154, "on_duty": 1}

我想找出每分钟2件事,员工总数在线和那些没有值班,并处理它使用结构化Spark流
这是每分钟wrt。时间戳,而不是系统时间。

Kafka产品

_producer = KafkaProducer(bootstrap_servers=['localhost:9092'],
                         value_serializer=lambda x: 
                         json.dumps(x).encode('utf-8'))

    # schedule.every(1).minutes.do(_producer.send(topic_name, value=( json.loads(json.dumps(dataDict))) ) )

    with open(filepath, 'r', encoding="utf16") as f: 

        for item in json_lines.reader(f):
            dataDict.update({'timeStamp':item['timestamp'],
                    'emp_id':item['emp_id'],
                    'on_duty':item['on_duty']})
            _producer.send(topic_name, value=( json.loads(json.dumps(dataDict))) )
            sleep(1)

# ^ Threading doesn't work BTW

Spark流

emp_stream = spark \
  .readStream \
  .format("kafka") \
  .option("kafka.bootstrap.servers", "localhost:9092") \
  .option("subscribe", "emp_dstream") \
  .option("startingOffsets", "latest") \
  .load() \
  .selectExpr("CAST(value AS STRING)") 

emp_data = emp_stream.select([
  get_json_object(col("value").cast("string"), "$.{}".format(c)).alias(c)
  for c in ["timeStamp", "emp_id", "on_duty"]])

# this query is a filler attempt which is not the end goal of the task

query = emp_data.groupBy(["on_duty"]).count()

emp_data.writeStream \
  .outputMode("append") \
  .format("console") \
  .start() \
  .awaitTermination()

我不知道该怎么办。我是在Kafka制作者中进行更改还是在用spark处理流时进行更改?我该怎么做?
如有任何提示或帮助,我们将不胜感激!
更新acc至@srinivas solution

....----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+-----------------+
|[1970-01-18 04:46:00, 1970-01-18 04:47:00]|1970-01-18 04:46:05|1070         |[1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,....
-------------------------------------------
Batch: 40
-------------------------------------------
+------------------------------------------+-------------------+--------------+-----------------+
|window                                    |timestamp          |Online_emp|Available_emp|
+------------------------------------------+-------------------+--------------+-----------------+
|[2017-12-31 16:04:00, 2017-12-31 16:05:00]|2017-12-31 16:04:53|20            |12               |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:44|20            |0                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:47|4             |0                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:27|20            |4                |
|[2017-12-31 16:03:00, 2017-12-31 16:04:00]|2017-12-31 16:03:10|4             |0                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:25|4             |0                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:42|12            |4                |
|[2017-12-31 16:03:00, 2017-12-31 16:04:00]|2017-12-31 16:03:20|4             |0                |
|[2017-12-31 16:03:00, 2017-12-31 16:04:00]|2017-12-31 16:03:49|4             |0                |
|[2017-12-31 16:03:00, 2017-12-31 16:04:00]|2017-12-31 16:03:44|12            |8                |
|[2017-12-31 16:02:00, 2017-12-31 16:03:00]|2017-12-31 16:02:19|8             |4                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:15|8             |0                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:08|12            |4                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:50|8             |0                |
|[2017-12-31 16:04:00, 2017-12-31 16:05:00]|2017-12-31 16:04:27|16            |0                |
|[2017-12-31 16:00:00, 2017-12-31 16:01:00]|2017-12-31 16:00:38|5             |0                |
|[2017-12-31 16:03:00, 2017-12-31 16:04:00]|2017-12-31 16:03:13|4             |4                |
|[2017-12-31 16:01:00, 2017-12-31 16:02:00]|2017-12-31 16:01:36|8             |4                |
|[2017-12-31 16:04:00, 2017-12-31 16:05:00]|2017-12-31 16:04:59|24            |4                |
|[2017-12-31 16:00:00, 2017-12-31 16:01:00]|2017-12-31 16:00:40|10            |0                |
+------------------------------------------+-------------------+--------------+-----------------+
only showing top 20 rows

-------------------------------------------
Batch: 41
-------------------------------------------
+------------------------------------------+-------------------+--------------+-----------------+
|window                                    |timestamp          |Online_emp|Available_emp|
+------------------------------------------+-------------------+--------------+-----------------+
|[2017-12-31 16:04:00, 2017-12-31 16:05:00]|2017-12-31 16:04:53|20            |12               |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:44|20            |0                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:47|4             |0                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:27|20            |4                |
|[2017-12-31 16:03:00, 2017-12-31 16:04:00]|2017-12-31 16:03:10|4             |0                |
|[2017-12-31 16:05:00, 2017-12-31 16:06:00]|2017-12-31 16:05:25|4             |0                |

更新2
如何获得这样的输出:

Time    Online_Emp  Available_Emp
2019-01-01 00:00:00 52  23
2019-01-01 00:01:00 58  19
2019-01-01 00:02:00 65  28
kx7yvsdv

kx7yvsdv1#

使用 window 功能。
Kafka的样本数据

{"timeStamp": 1592669811475, "emp_id": 12471979, "on_duty": 0}
{"timeStamp": 1592669811475, "emp_id": 12472154, "on_duty": 1}
{"timeStamp": 1592669811475, "emp_id": 12471980, "on_duty": 0}
{"timeStamp": 1592669811475, "emp_id": 12472181, "on_duty": 1}
{"timeStamp": 1592669691475, "emp_id": 12471982, "on_duty": 0}
{"timeStamp": 1592669691475, "emp_id": 12472183, "on_duty": 1}
{"timeStamp": 1592669691475, "emp_id": 12471984, "on_duty": 0}
{"timeStamp": 1592669571475, "emp_id": 12472185, "on_duty": 1}
{"timeStamp": 1592669571475, "emp_id": 12472186, "on_duty": 1}
{"timeStamp": 1592669571475, "emp_id": 12472187, "on_duty": 0}
{"timeStamp": 1592669571475, "emp_id": 12472188, "on_duty": 1}
{"timeStamp": 1592669631475, "emp_id": 12472185, "on_duty": 1}
{"timeStamp": 1592669631475, "emp_id": 12472186, "on_duty": 1}
{"timeStamp": 1592669631475, "emp_id": 12472187, "on_duty": 0}
{"timeStamp": 1592669631475, "emp_id": 12472188, "on_duty": 1}
from pyspark.sql import functions as F
from pyspark.sql.types import DoubleType, StructField, StructType, LongType, TimestampType
schema = StructType([ \
    StructField("timeStamp", LongType()), \
    StructField("emp_id", LongType()), \
    StructField("on_duty", LongType())])
df = spark\
    .readStream\
    .format("kafka")\
    .option("kafka.bootstrap.servers", "localhost:9092")\
    .option("subscribe","emp_dstream")\
    .option("startingOffsets", "earliest")\
    .load()\
    .selectExpr("CAST(value AS STRING)")\
    .select(F.from_json(F.col("value"), schema).alias("value"))\
    .select(F.col("value.*"))\
    .withColumn("timestamp",F.from_unixtime(F.col("timestamp") / 1000))\
    .groupBy(F.window(F.col("timestamp"), "1 minutes"), F.col("timestamp"))\
    .agg(F.count(F.col("timeStamp")).alias("total_employees"),F.collect_list(F.col("on_duty")).alias("on_duty"),F.sum(F.when(F.col("on_duty") == 0, F.lit(1)).otherwise(F.lit(0))).alias("not_on_duty"))\
    .writeStream\
    .format("console")\
    .outputMode("complete")\
    .option("truncate", "false")\
    .start()\
    .awaitTermination()

输出

+---------------------------------------------+-------------------+---------------+------------+-----------+
|window                                       |timestamp          |total_employees|on_duty     |not_on_duty|
+---------------------------------------------+-------------------+---------------+------------+-----------+
|[2020-06-20 21:42:00.0,2020-06-20 21:43:00.0]|2020-06-20 21:42:51|4              |[1, 1, 0, 1]|1          |
|[2020-06-20 21:44:00.0,2020-06-20 21:45:00.0]|2020-06-20 21:44:51|3              |[0, 1, 0]   |2          |
|[2020-06-20 21:46:00.0,2020-06-20 21:47:00.0]|2020-06-20 21:46:51|4              |[0, 1, 0, 1]|2          |
|[2020-06-20 21:43:00.0,2020-06-20 21:44:00.0]|2020-06-20 21:43:51|4              |[1, 1, 0, 1]|1          |
+---------------------------------------------+-------------------+---------------+------------+-----------+

Spark批

spark \
    .read \
    .schema(schema) \
    .json("/tmp/data/emp_data.json") \
    .select(F.to_json(F.struct("*")).cast("string").alias("value")) \
    .write \
    .format("kafka") \
    .option("kafka.bootstrap.servers", "localhost:9092") \
    .option("topic", "emp_data") \
    .save()

Spark流

spark \
    .readStream \
    .schema(schema) \
    .json("/tmp/data/emp_data.json") \
    .select(F.to_json(F.struct("*")).cast("string").alias("value")) \
    .writeStream \
    .format("kafka") \
    .option("kafka.bootstrap.servers", "localhost:9092") \
    .option("topic", "emp_data") \
    .start()

kafka中的json数据

/tmp/data> kafka-console-consumer --bootstrap-server localhost:9092 --topic emp_data
{"timeStamp":1592669811475,"emp_id":12471979,"on_duty":0}
{"timeStamp":1592669811475,"emp_id":12472154,"on_duty":1}
{"timeStamp":1592669811475,"emp_id":12471980,"on_duty":0}
{"timeStamp":1592669811475,"emp_id":12472181,"on_duty":1}
{"timeStamp":1592669691475,"emp_id":12471982,"on_duty":0}
{"timeStamp":1592669691475,"emp_id":12472183,"on_duty":1}
{"timeStamp":1592669691475,"emp_id":12471984,"on_duty":0}
{"timeStamp":1592669571475,"emp_id":12472185,"on_duty":1}
{"timeStamp":1592669571475,"emp_id":12472186,"on_duty":1}
{"timeStamp":1592669571475,"emp_id":12472187,"on_duty":0}
{"timeStamp":1592669571475,"emp_id":12472188,"on_duty":1}
{"timeStamp":1592669631475,"emp_id":12472185,"on_duty":1}
{"timeStamp":1592669631475,"emp_id":12472186,"on_duty":1}
{"timeStamp":1592669631475,"emp_id":12472187,"on_duty":0}
{"timeStamp":1592669631475,"emp_id":12472188,"on_duty":1}
^CProcessed a total of 15 messages

相关问题