filter spark dataframe,行字段是字符串数组

abithluo  于 2021-05-29  发布在  Spark
关注(0)|答案(2)|浏览(631)

使用spark 1.5和scala 2.10.6
我试图通过一个字符串数组字段“tags”来过滤Dataframe。正在查找标记为“private”的所有行。

val report = df.select("*")
  .where(df("tags").contains("private"))

得到:
线程“main”org.apache.spark.sql.analysisexception中出现异常:由于数据类型不匹配,无法解析“contains(tags,private)”:参数1需要字符串类型,但是,“tags”是数组类型。;
过滤法更合适吗?
更新时间:
数据来自cassandra adapter,但最简单的示例显示了我正在尝试执行的操作,也得到了上述错误:

def testData (sc: SparkContext): DataFrame = {
    val stringRDD = sc.parallelize(Seq("""
      { "name": "ed",
        "tags": ["red", "private"]
      }""",
      """{ "name": "fred",
        "tags": ["public", "blue"]
      }""")
    )
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    import sqlContext.implicits._
    sqlContext.read.json(stringRDD)
  }
  def run(sc: SparkContext) {
    val df1 = testData(sc)
    df1.show()
    val report = df1.select("*")
      .where(df1("tags").contains("private"))
    report.show()
  }

更新:标签数组可以是任意长度,“private”标签可以位于任意位置
更新:一个有效的解决方案:udf

val filterPriv = udf {(tags: mutable.WrappedArray[String]) => tags.contains("private")}
val report = df1.filter(filterPriv(df1("tags")))
ddarikpa

ddarikpa1#

我想如果你用 where(array_contains(...)) 会有用的。我的结果是:

scala> import org.apache.spark.SparkContext
import org.apache.spark.SparkContext

scala> import org.apache.spark.sql.DataFrame
import org.apache.spark.sql.DataFrame

scala> def testData (sc: SparkContext): DataFrame = {
     |     val stringRDD = sc.parallelize(Seq
     |      ("""{ "name": "ned", "tags": ["blue", "big", "private"] }""",
     |       """{ "name": "albert", "tags": ["private", "lumpy"] }""",
     |       """{ "name": "zed", "tags": ["big", "private", "square"] }""",
     |       """{ "name": "jed", "tags": ["green", "small", "round"] }""",
     |       """{ "name": "ed", "tags": ["red", "private"] }""",
     |       """{ "name": "fred", "tags": ["public", "blue"] }"""))
     |     val sqlContext = new org.apache.spark.sql.SQLContext(sc)
     |     import sqlContext.implicits._
     |     sqlContext.read.json(stringRDD)
     |   }
testData: (sc: org.apache.spark.SparkContext)org.apache.spark.sql.DataFrame

scala>   
     | val df = testData (sc)
df: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]

scala> val report = df.select ("*").where (array_contains (df("tags"), "private"))
report: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]

scala> report.show
+------+--------------------+
|  name|                tags|
+------+--------------------+
|   ned|[blue, big, private]|
|albert|    [private, lumpy]|
|   zed|[big, private, sq...|
|    ed|      [red, private]|
+------+--------------------+

请注意,如果你写 where(array_contains(df("tags"), "private")) ,但如果你写 where(df("tags").array_contains("private")) (更直接地类似于你最初写的)它失败了 array_contains is not a member of org.apache.spark.sql.Column . 查看源代码 Column ,我看到有些事情要处理 contains (构建一个 Contains 例如)但不是 array_contains . 也许这是疏忽。

vbkedwbf

vbkedwbf2#

您可以使用ordinal来引用json数组的 df("tags")(0) . 这是一个工作样本

scala> val stringRDD = sc.parallelize(Seq("""
     |       { "name": "ed",
     |         "tags": ["private"]
     |       }""",
     |       """{ "name": "fred",
     |         "tags": ["public"]
     |       }""")
     |     )
stringRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[87] at parallelize at <console>:22

scala> import sqlContext.implicits._
import sqlContext.implicits._

scala> sqlContext.read.json(stringRDD)
res28: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]

scala> val df=sqlContext.read.json(stringRDD)
df: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]

scala> df.columns
res29: Array[String] = Array(name, tags)

scala> df.dtypes
res30: Array[(String, String)] = Array((name,StringType), (tags,ArrayType(StringType,true)))

scala> val report = df.select("*").where(df("tags")(0).contains("private"))
report: org.apache.spark.sql.DataFrame = [name: string, tags: array<string>]

scala> report.show
+----+-------------+
|name|         tags|
+----+-------------+
|  ed|List(private)|
+----+-------------+

相关问题