nodewritable java.lang.noclassdeffounderror hadoop jena

6ljaweal  于 2021-05-29  发布在  Hadoop
关注(0)|答案(1)|浏览(436)

我的jena hadoop mapreduce示例抛出java.lang.noclassdeffounderror。这是一个专业的项目。我读到它可能与丢失的依赖项有关,但我不知道我丢失了哪一个!有什么问题吗?
控制台日志

java.lang.NoClassDefFoundError: org/apache/jena/hadoop/rdf/types/NodeWritable
        at org.apache.jena.hadoop.rdf.stats.RdfMapReduceExample.main(RdfMapReduceExample.java:29)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:497)
        at org.apache.hadoop.util.RunJar.run(RunJar.java:221)
        at org.apache.hadoop.util.RunJar.main(RunJar.java:136)
Caused by: java.lang.ClassNotFoundException: org.apache.jena.hadoop.rdf.types.NodeWritable
        at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
        at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
        ... 7 more

Map代码第1部分

package org.apache.jena.hadoop.rdf.mapreduce.count;

import java.io.IOException;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.jena.hadoop.rdf.types.AbstractNodeTupleWritable;
import org.apache.jena.hadoop.rdf.types.NodeWritable;

public abstract class AbstractNodeTupleNodeCountMapper<TKey, TValue, T extends AbstractNodeTupleWritable<TValue>>
        extends Mapper<TKey, T, NodeWritable, LongWritable> {
    private LongWritable initialCount = new LongWritable(1);

    @Override
    protected void map(TKey key, T value, Context context) throws IOException, InterruptedException {
        NodeWritable[] ns = this.getNodes(value);
        for (NodeWritable n : ns) {
            context.write(n, this.initialCount);
        }
    }

    protected abstract NodeWritable[] getNodes(T tuple);
}

Map代码第2部分

package org.apache.jena.hadoop.rdf.mapreduce.count;

import org.apache.jena.graph.Triple;
import org.apache.jena.hadoop.rdf.mapreduce.count.AbstractNodeTupleNodeCountMapper;
import org.apache.jena.hadoop.rdf.types.NodeWritable;
import org.apache.jena.hadoop.rdf.types.TripleWritable;

public class TripleNodeCountMapper<TKey> extends AbstractNodeTupleNodeCountMapper<TKey, Triple, TripleWritable> {
    @Override
    protected NodeWritable[] getNodes(TripleWritable tuple) {
        Triple t = tuple.get();
        return new NodeWritable[] { new NodeWritable(t.getSubject()), new NodeWritable(t.getPredicate()),
                new NodeWritable(t.getObject()) };
    }
}

减少代码

package org.apache.jena.hadoop.rdf.mapreduce.count;

import java.io.IOException;
import java.util.Iterator;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.jena.hadoop.rdf.types.NodeWritable;

public class NodeCountReducer extends Reducer<NodeWritable, LongWritable, NodeWritable, LongWritable> {
    @Override
    protected void reduce(NodeWritable key, Iterable<LongWritable> values, Context context)
            throws IOException, InterruptedException {
        long count = 0;
        Iterator<LongWritable> iter = values.iterator();
        while (iter.hasNext()) {
            count += iter.next().get();
        }
        context.write(key, new LongWritable(count));
    }
}

作业处理程序

package org.apache.jena.hadoop.rdf.stats;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.jena.hadoop.rdf.io.input.TriplesInputFormat;
import org.apache.jena.hadoop.rdf.io.output.ntriples.NTriplesNodeOutputFormat;
import org.apache.jena.hadoop.rdf.mapreduce.count.NodeCountReducer;
import org.apache.jena.hadoop.rdf.mapreduce.count.TripleNodeCountMapper;
import org.apache.jena.hadoop.rdf.types.NodeWritable;

public class RdfMapReduceExample {

    public static void main(String[] args) {
        try {
            // Get Hadoop configuration
            Configuration config = new Configuration(true);

            // Create job
            Job job = Job.getInstance(config);
            job.setJarByClass(RdfMapReduceExample.class);
            job.setJobName("RDF Triples Node Usage Count");

            // Map/Reduce classes
            job.setMapperClass(TripleNodeCountMapper.class);
            job.setMapOutputKeyClass(NodeWritable.class);
            job.setMapOutputValueClass(LongWritable.class);
            job.setReducerClass(NodeCountReducer.class);

            // Input and Output
            job.setInputFormatClass(TriplesInputFormat.class);
            job.setOutputFormatClass(NTriplesNodeOutputFormat.class);
            FileInputFormat.setInputPaths(job, new Path(args[1]));
            FileOutputFormat.setOutputPath(job, new Path(args[2]));

            // Launch the job and await completion
            job.submit();
            if (job.monitorAndPrintJob()) {
                // OK
                System.out.println("Completed");
            } else {
                // Failed
                System.err.println("Failed");
            }
        } catch (Throwable e) {
            e.printStackTrace();
        }
    }
}

pom.xml依赖项

<dependencies>
    <!-- https://mvnrepository.com/artifact/org.apache.jena/jena-elephas-common -->
    <dependency>
        <groupId>org.apache.jena</groupId>
        <artifactId>jena-elephas-common</artifactId>
        <version>3.1.1</version>
    </dependency>

    <dependency>
        <groupId>org.apache.jena</groupId>
        <artifactId>jena-elephas-io</artifactId>
        <version>3.1.1</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-mapreduce-client-common -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-mapreduce-client-common</artifactId>
        <version>2.7.1</version>
        <scope>provided</scope>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
    <dependency>
        <groupId>org.apache.hadoop</groupId>
        <artifactId>hadoop-common</artifactId>
        <version>2.7.1</version>
        <scope>provided</scope>
    </dependency>
</dependencies>
v8wbuo2f

v8wbuo2f1#

您的依赖关系声明是正确的,否则您的代码将根本无法编译。
您的问题是jar可能只包含您的代码,而不包含任何必要的依赖项。因此,当map reduce尝试运行代码时,不存在任何依赖项。
通常,在为map reduce构建时,最好创建一个包含代码和所有依赖项的胖jar。可以使用maven程序集插件来实现这一点(如果愿意,也可以使用maven shade)。
将此添加到您的 pom.xml :

<plugin>
        <artifactId>maven-assembly-plugin</artifactId>
        <configuration>
          <descriptors>
            <descriptor>hadoop-job.xml</descriptor>
          </descriptors>
        </configuration>
        <executions>
          <execution>
            <id>make-assembly</id>
            <phase>package</phase>
            <goals>
              <goal>single</goal>
            </goals>
          </execution>
        </executions>
      </plugin>

添加并使用此 hadoop-job.xml :

<assembly>
  <id>hadoop-job</id>
  <formats>
    <format>jar</format>
  </formats>
  <includeBaseDirectory>false</includeBaseDirectory>
  <dependencySets>
    <dependencySet>
      <unpack>false</unpack>
      <scope>provided</scope>
      <outputDirectory>lib</outputDirectory>
      <excludes>
        <exclude>${groupId}:${artifactId}</exclude>
      </excludes>
    </dependencySet>
    <dependencySet>
      <unpack>true</unpack>
      <includes>
        <include>${groupId}:${artifactId}</include>
      </includes>
    </dependencySet>
  </dependencySets>
</assembly>

本质上,这要求maven构建一个胖jar,其中包含所有未提供的依赖项。这将创建一个称为 your-artifact-VERSION-hadoop-job.jar 你应该运行它而不是普通的jar

相关问题