我在mapper类中使用了setup()方法。还有一个用户定义的方法apriorigenk(),在mapper类中定义,并在map()方法中调用。
现在的问题是:无论我知道什么,map方法都为每一行输入调用。假设有100行,那么这个方法调用100次。map方法每次相应地调用apriorigenk方法。但每次调用map方法时,不需要在map方法内调用apriorigenk。i、 apriorigenk方法的结果是map方法所有输入行的共同结果。apriorigenk方法非常占用cpu,因此在反复调用时会增加计算时间。我们能不能设法一次调用apriorigenk,每次在map方法中使用它。我曾尝试将apriorigen保存在setup方法中,以便只能调用一次,但令人惊讶的是,它在很大程度上减慢了执行速度。
这是我的密码:
import dataStructuresV2.ItemsetTrie;
public class AprioriTrieMapper extends Mapper<Object, Text, Text, IntWritable>
{
public static enum State
{
UPDATED
}
private final static IntWritable one = new IntWritable(1);
private Text itemset = new Text();
private Configuration conf;
private StringTokenizer fitemset; // store one line of previous output file of frequent itemsets
private ItemsetTrie trieLk_1 = null; // prefix tree to store candidate (k-1)-itemsets of previous pass
private int k; // itemsetSize or iteration no.
// private ItemsetTrie trieCk = null; // prefix tree to store candidate k-itemsets
public void setup(Context context) throws IOException, InterruptedException
{
conf = context.getConfiguration();
URI[] previousOutputURIs = Job.getInstance(conf).getCacheFiles();
k = conf.getInt("k", k);
trieLk_1 = new ItemsetTrie();
for (URI previousOutputURI : previousOutputURIs)
{
Path previousOutputPath = new Path(previousOutputURI.getPath());
String previousOutputFileName = previousOutputPath.getName().toString();
filterItemset(previousOutputFileName, trieLk_1);
}
// trieCk = aprioriGenK(trieLk_1, k-1); // candidate generation from prefix tree of size k-1
}// end method setup
//trim count from each line and store only itemset
private void filterItemset(String fileName, ItemsetTrie trieLk_1)
{
try
{
BufferedReader fis = new BufferedReader(new FileReader(fileName));
String line = null;
// trieLk_1 = new ItemsetTrie();
while ((line = fis.readLine()) != null)
{
fitemset = new StringTokenizer(line, "\t");
trieLk_1.insertCandidateItemset(fitemset.nextToken());
}
fis.close();
}
catch (IOException ioe)
{
System.err.println("Caught exception while parsing the cached file '" + fileName + "' : " + StringUtils.stringifyException(ioe));
}
}// end method filterItemset
public void map(Object key, Text value, Context context) throws IOException, InterruptedException
{
StringTokenizer items = new StringTokenizer(value.toString().toLowerCase()," \t\n\r\f,.:;?![]'"); // tokenize transaction
LinkedList <String>itemlist = new LinkedList<String>(); // store the tokens or itemse of transaction
LinkedList <String>listCt; // list of subset of transaction that are candidates
// Map <String, Integer>mapCt; // list of subset of transaction that are candidates with support count
ItemsetTrie trieCk = null; // prefix tree to store candidate k-itemsets
StringTokenizer candidate;
trieCk = aprioriGenK(trieLk_1, k-1); // candidate generation from prefix tree of size k-1
if(trieCk.numberOfCandidate() > 0)
context.getCounter(State.UPDATED).increment(1); // increment counter
// optimization: if transaction size is less than candidate size then it should not be checked
if(items.countTokens() >= k)
{
while (items.hasMoreTokens()) // add tokens of transaction to list
itemlist.add(items.nextToken());
// we use either simple linkedlist listCt or map mapCt
listCt = trieCk.candidateSupportCount1(itemlist, k);
for(String listCtMember : listCt) // generate (key, value) pair. work on listCt
{
candidate = new StringTokenizer(listCtMember, "\n");
if(candidate.hasMoreTokens())
{
itemset.set(candidate.nextToken()); context.write(itemset, one);
}
}
} // end if
} // end method map
// generating candidate prefix tree of size k using prefix tree of size k-1
public ItemsetTrie aprioriGenK(ItemsetTrie trieLk_1, int itemsetSize) // itemsetSize of trie Lk_1
{
ItemsetTrie candidateTree = new ItemsetTrie(); // local prefix tree store candidates k-itemsets
trieLk_1.candidateGenK(candidateTree, itemsetSize); // new candidate prefix tree obtained
return candidateTree; // return prefix tree of size k
} // end method aprioriGenK
} //end class TrieBasedSPCItemsetMapper
这是我的驾驶课:
public class aprioritrie{private static logger log=logger.getlogger(aprioritrie.class);
public static void main(String[] args) throws Exception
{
Configuration conf = new Configuration();
// String minsup = "1";
String minsup = null;
List<String> otherArgs = new ArrayList<String>();
for (int i=0; i < args.length; ++i)
{
if ("-minsup".equals(args[i]))
minsup = args[++i];
else
otherArgs.add(args[i]);
}
conf.set("min_sup", minsup);
log.info("Started counting 1-itemset ....................");
Date date; long startTime, endTime; // for recording start and end time of job
date = new Date(); startTime = date.getTime(); // starting timer
// Phase-1
Job job = Job.getInstance(conf, "AprioriTrie: Iteration-1");
job.setJarByClass(aprioriBasedAlgorithms.AprioriTrie.class);
job.setMapperClass(OneItemsetMapper.class);
job.setCombinerClass(OneItemsetCombiner.class);
job.setReducerClass(OneItemsetReducer.class);
// job.setOutputKeyClass(Text.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(IntWritable.class);
job.setInputFormatClass(NLineInputFormat.class);
NLineInputFormat.setNumLinesPerSplit(job, 10000); // set specific no. of line of records
// Path inputPath = new Path("hdfs://hadoopmaster:9000/user/hduser/sample-transactions1/");
Path inputPath = new Path(otherArgs.get(0));
// Path outputPath = new Path("hdfs://hadoopmaster:9000/user/hduser/AprioriTrie/fis-1");
Path outputPath = new Path(otherArgs.get(1)+"/fis-1");
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath);
if(job.waitForCompletion(true))
log.info("SUCCESSFULLY- Completed Frequent 1-itemsets Geneation.");
else
log.info("ERROR- Completed Frequent 1-itemsets Geneation.");
// Phase-k >=2
int iteration = 1; long counter;
do
{
Configuration conf2 = new Configuration();
conf2.set("min_sup", minsup);
conf2.setInt("k", iteration+1);
log.info("Started counting "+(iteration+1)+"-itemsets ..................");
Job job2 = Job.getInstance(conf2, "AprioriTrie: Iteration-"+(iteration+1));
job2.setJarByClass(aprioriBasedAlgorithms.AprioriTrie.class);
job2.setMapperClass(AprioriTrieMapper.class);
job2.setCombinerClass(ItemsetCombiner.class);
job2.setReducerClass(ItemsetReducer.class);
job2.setOutputKeyClass(Text.class);
job2.setOutputValueClass(IntWritable.class);
job2.setNumReduceTasks(4); // break the output in 3 files
job2.setInputFormatClass(NLineInputFormat.class);
NLineInputFormat.setNumLinesPerSplit(job2, 10000);
FileSystem fs = FileSystem.get(new URI("hdfs://hadoopmaster:9000"), conf2);
// FileStatus[] status = fs.listStatus(new Path("hdfs://hadoopmaster:9000/user/hduser/AprioriTrie/fis-"+iteration+"/"));
FileStatus[] status = fs.listStatus(new Path(otherArgs.get(1)+"/fis-"+iteration));
for (int i=0;i<status.length;i++)
{
job2.addCacheFile(status[i].getPath().toUri()); // add all files inside output fis
//job2.addFileToClassPath(status[i].getPath());
}
// input is same for these job
// outputPath = new Path("hdfs://hadoopmaster:9000/user/hduser/AprioriTrie/fis-"+(iteration+1));
outputPath = new Path(otherArgs.get(1)+"/fis-"+(iteration+1));
FileInputFormat.setInputPaths(job2, inputPath);
FileOutputFormat.setOutputPath(job2, outputPath);
if(job2.waitForCompletion(true))
log.info("SUCCESSFULLY- Completed Frequent "+(iteration+1)+"-itemsets Generation.");
else
log.info("ERROR- Completed Frequent "+(iteration+1)+"-itemsets Generation.");
iteration++;
counter = job2.getCounters().findCounter(AprioriTrieMapper.State.UPDATED).getValue();
} while (counter > 0);
date = new Date(); endTime = date.getTime(); //end timer
log.info("Total Time (in milliseconds) = "+ (endTime-startTime));
log.info("Total Time (in seconds) = "+ (endTime-startTime)*0.001F);
}
}
2条答案
按热度按时间ikfrs5lh1#
您可以在安装程序调用之后将该函数调用添加到Map器的run方法中。这将确保每个Map器只调用一次您的方法。
brtdzjyr2#
我对mapper类进行了更改,但是生成的代码非常慢,似乎它对
aprioriGenK()
.这是我修改过的代码。