使用spark 1.1
我的工作如下:
读取给定根目录下的文件夹列表,并行化该列表
对于每个文件夹,读取其下的文件-这些是gzip文件
对于每个文件,提取内容-这些是行,每行表示一个事件,字段用制表符分隔(tsv)
创建所有行的单个rdd。
将tsv转换为json。
(现在,这些行表示某个事件类型。有4种类型:会话、请求、推荐、用户事件)
仅筛选出会话事件。根据某个用户id字段,仅对其中的1:100进行采样。将它们转换为一对,并使用一个表示某种输出结构(如:event type/date/the events)的键,然后将其写入fs。
对请求和用户事件执行相同的操作
(对于推荐,不能根据用户id进行采样(因为用户id不存在),但是我们知道基于相互请求id字段的请求和推荐之间存在1:1的关系。所以:)
创建不同请求ID的列表。将此列表与基于请求id的推荐列表作为键连接,从而实现所需的过滤。然后将缩减后的列表输出到fs。
现在,我的问题来了。我用来做这些事情的代码只适用于小规模。但是,当我使用相对较大的输入,使用80台机器的集群,每个机器有8个内核和50gb内存时,我可以看到许多机器没有被利用,这意味着只有一个内核被占用(也只有20%),而内存在配置给作业的40gb内存中只有16gb。
我认为在某些地方我的转换没有很好地并行化,但我不知道在哪里以及为什么。以下是我的大部分代码(我省略了一些我认为与问题无关的辅助函数)
public static void main(String[] args) {
BasicConfigurator.configure();
conf[0] = new Conf("local[4]");
conf[1] = new Conf("spark://hadoop-m:7077");
Conf configuration = conf[1];
if (args.length != 4) {
log.error("Error in parameters. Syntax: <input path> <output_path> <filter_factor> <locality>\nfilter_factor is what fraction of sessions to process. For example, to process 1/100 of sessions, use 100\nlocality should be set to \"local\" in case running on local environment, and to \"remote\" otherwise.");
System.exit(-1);
}
final String inputPath = args[0];
final String outputPath = args[1];
final Integer filterFactor;
if (args[3].equals("local")) {
configuration = conf[0];
}
log.setLevel(Level.DEBUG);
Logger.getRootLogger().removeAppender("console");
final SparkConf conf = new SparkConf().setAppName("phase0").setMaster(configuration.getMaster());
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
conf.set("spark.kryo.registrator", "com.doit.customer.dataconverter.MyRegistrator");
final JavaSparkContext sc = new JavaSparkContext(conf);
if (configuration.getMaster().contains("spark:")) {
sc.addJar("/home/hadoop/hadoop-install/phase0-1.0-SNAPSHOT-jar-with-dependencies.jar");
}
try {
filterFactor = Integer.parseInt(args[2]);
// read all folders from root
Path inputPathObj = new Path(inputPath);
FileSystem fs = FileSystem.get(inputPathObj.toUri(), new Configuration(true));
FileStatus[] statusArr = fs.globStatus(inputPathObj);
List<FileStatus> statusList = Arrays.asList(statusArr);
List<String> pathsStr = convertFileStatusToPath(statusList);
JavaRDD<String> paths = sc.parallelize(pathsStr);
// read all files from each folder
JavaRDD<String> filePaths = paths.mapPartitions(new FlatMapFunction<Iterator<String>, String>() {
@Override
public Iterable<String> call(Iterator<String> pathsIterator) throws Exception {
List<String> filesPath = new ArrayList<String>();
if (pathsIterator != null) {
while (pathsIterator.hasNext()) {
String currFolder = pathsIterator.next();
Path currPath = new Path(currFolder);
FileSystem fs = FileSystem.get(currPath.toUri(), new Configuration(true));
FileStatus[] files = fs.listStatus(currPath);
List<FileStatus> filesList = Arrays.asList(files);
List<String> filesPathsStr = convertFileStatusToPath(filesList);
filesPath.addAll(filesPathsStr);
}
}
return filesPath;
}
});
// Transform list of files to list of all files' content in lines
JavaRDD<String> typedData = filePaths.map(new Function<String, List<String>>() {
@Override
public List<String> call(String filePath) throws Exception {
Tuple2<String, List<String>> tuple = null;
try {
String fileType = null;
List<String> linesList = new ArrayList<String>();
Configuration conf = new Configuration();
CompressionCodecFactory compressionCodecs = new CompressionCodecFactory(conf);
Path path = new Path(filePath);
fileType = getType(path.getName());
// filter non-trc files
if (!path.getName().startsWith("1")) {
return linesList;
}
CompressionCodec codec = compressionCodecs.getCodec(path);
FileSystem fs = path.getFileSystem(conf);
InputStream in = fs.open(path);
if (codec != null) {
in = codec.createInputStream(in);
} else {
throw new IOException();
}
BufferedReader r = new BufferedReader(new InputStreamReader(in, "UTF-8"), BUFFER_SIZE);
// This line will not be added to the list ,
// which is what we want - filter the header row
String line = r.readLine();
// Read all lines
while ((line = r.readLine()) != null) {
try {
String sliceKey = getSliceKey(line, fileType);
// Adding event type and output slice key as additional fields
linesList.add(fileType + "\t" + sliceKey + "\t" + line);
} catch(ParseException e) {
}
}
return linesList;
} catch (Exception e) { // Filtering of files whose reading went wrong
log.error("Reading of the file " + filePath + " went wrong: " + e.getMessage());
return new ArrayList();
}
}
// flatten to one big list with all the lines
}).flatMap(new FlatMapFunction<List<String>, String>() {
@Override
public Iterable<String> call(List<String> strings) throws Exception {
return strings;
}
});
// convert tsv to json
JavaRDD<ObjectNode> jsons = typedData.mapPartitions(new FlatMapFunction<Iterator<String>, ObjectNode>() {
@Override
public Iterable<ObjectNode> call(Iterator<String> stringIterator) throws Exception {
List<ObjectNode> res = new ArrayList<>();
while(stringIterator.hasNext()) {
String currLine = stringIterator.next();
Iterator<String> i = Splitter.on("\t").split(currLine).iterator();
if (i.hasNext()) {
String type = i.next();
ObjectNode json = convert(currLine, type, filterFactor);
if(json != null) {
res.add(json);
}
}
}
return res;
}
}).cache();
createOutputType(jsons, "Session", outputPath, null);
createOutputType(jsons, "UserEvent", outputPath, null);
JavaRDD<ObjectNode> requests = createOutputType(jsons, "Request", outputPath, null);
// Now leave only the set of request ids - to inner join with the recommendations
JavaPairRDD<String,String> requestsIds = requests.mapToPair(new PairFunction<ObjectNode, String, String>() {
@Override
public Tuple2<String, String> call(ObjectNode jsonNodes) throws Exception {
String id = jsonNodes.get("id").asText();
return new Tuple2<String, String>(id,id);
}
}).distinct();
createOutputType(jsons,"RecommendationList", outputPath, requestsIds);
} catch (IOException e) {
log.error(e);
System.exit(1);
} catch (NumberFormatException e) {
log.error("filter factor is not a valid number!!");
System.exit(-1);
}
sc.stop();
}
private static JavaRDD<ObjectNode> createOutputType(JavaRDD jsonsList, final String type, String outputPath,JavaPairRDD<String,String> joinKeys) {
outputPath = outputPath + "/" + type;
JavaRDD events = jsonsList.filter(new Function<ObjectNode, Boolean>() {
@Override
public Boolean call(ObjectNode jsonNodes) throws Exception {
return jsonNodes.get("type").asText().equals(type);
}
});
// This is in case we need to narrow the list to match some other list of ids... Recommendation List, for example... :)
if(joinKeys != null) {
JavaPairRDD<String,ObjectNode> keyedEvents = events.mapToPair(new PairFunction<ObjectNode, String, ObjectNode>() {
@Override
public Tuple2<String, ObjectNode> call(ObjectNode jsonNodes) throws Exception {
return new Tuple2<String, ObjectNode>(jsonNodes.get("requestId").asText(),jsonNodes);
}
});
JavaRDD<ObjectNode> joinedEvents = joinKeys.join(keyedEvents).values().map(new Function<Tuple2<String, ObjectNode>, ObjectNode>() {
@Override
public ObjectNode call(Tuple2<String, ObjectNode> stringObjectNodeTuple2) throws Exception {
return stringObjectNodeTuple2._2;
}
});
events = joinedEvents;
}
JavaPairRDD<String,Iterable<ObjectNode>> groupedEvents = events.mapToPair(new PairFunction<ObjectNode, String, ObjectNode>() {
@Override
public Tuple2<String, ObjectNode> call(ObjectNode jsonNodes) throws Exception {
return new Tuple2<String, ObjectNode>(jsonNodes.get("sliceKey").asText(),jsonNodes);
}
}).groupByKey();
// Add convert jsons to strings and add "\n" at the end of each
JavaPairRDD<String, String> groupedStrings = groupedEvents.mapToPair(new PairFunction<Tuple2<String, Iterable<ObjectNode>>, String, String>() {
@Override
public Tuple2<String, String> call(Tuple2<String, Iterable<ObjectNode>> content) throws Exception {
String string = jsonsToString(content._2);
log.error(string);
return new Tuple2<>(content._1, string);
}
});
groupedStrings.saveAsHadoopFile(outputPath, String.class, String.class, KeyBasedMultipleTextOutputFormat.class);
return events;
}
// Notice the special case of if(joinKeys != null) in which I join the recommendations with request ids.
最后,我用来启动spark作业的命令是:
spark-submit --class com.doit.customer.dataconverter.Phase0 --driver-cores 8 --total-executor-cores 632 --driver-memory 40g --executor-memory 40G --deploy-mode cluster /home/hadoop/hadoop-install/phase0-1.0-SNAPSHOT-jar-with-dependencies.jar gs://input/2014_07_31* gs://output/2014_07_31 100 remote
1条答案
按热度按时间6g8kf2rb1#
初始分区基于根目录中的文件夹集(sc.parallelize(pathsstr))。在您的流程中有两个步骤可能会严重影响分区的平衡:1)如果某些文件夹的文件比其他文件夹多,则读取每个文件夹中的文件列表;2) 如果某些文件的行数比其他文件多,则从每个文件读取tsv行。
如果文件大小大致相同,但某些文件夹中的文件比其他文件夹中的文件多,则可以在收集文件名后重新平衡分区。设置文件路径的初始值后,请尝试添加此行:
这将把收集到的文件名洗牌到平衡分区中。
如果由于某些文件比其他文件大得多而导致不平衡,可以尝试通过类似地调用对其进行重新分区来重新平衡typeddata rdd,尽管这将非常昂贵,因为它将洗牌所有tsv数据。
或者,如果您重新平衡文件路径,但仍有一些分区不平衡,这是由于有许多稍大的文件最终位于几个分区中造成的,那么您可以通过在repartition参数中使用较大的数字来获得更好的性能,例如,乘以4,得到的分区数是内核数的4倍。这将增加一点通信成本,但如果它能更好地平衡typeddata中产生的分区大小,则可能是一个胜利。