spark作业似乎没有很好地并行化

ql3eal8s  于 2021-05-30  发布在  Hadoop
关注(0)|答案(1)|浏览(437)

使用spark 1.1
我的工作如下:
读取给定根目录下的文件夹列表,并行化该列表
对于每个文件夹,读取其下的文件-这些是gzip文件
对于每个文件,提取内容-这些是行,每行表示一个事件,字段用制表符分隔(tsv)
创建所有行的单个rdd。
将tsv转换为json。
(现在,这些行表示某个事件类型。有4种类型:会话、请求、推荐、用户事件)
仅筛选出会话事件。根据某个用户id字段,仅对其中的1:100进行采样。将它们转换为一对,并使用一个表示某种输出结构(如:event type/date/the events)的键,然后将其写入fs。
对请求和用户事件执行相同的操作
(对于推荐,不能根据用户id进行采样(因为用户id不存在),但是我们知道基于相互请求id字段的请求和推荐之间存在1:1的关系。所以:)
创建不同请求ID的列表。将此列表与基于请求id的推荐列表作为键连接,从而实现所需的过滤。然后将缩减后的列表输出到fs。
现在,我的问题来了。我用来做这些事情的代码只适用于小规模。但是,当我使用相对较大的输入,使用80台机器的集群,每个机器有8个内核和50gb内存时,我可以看到许多机器没有被利用,这意味着只有一个内核被占用(也只有20%),而内存在配置给作业的40gb内存中只有16gb。
我认为在某些地方我的转换没有很好地并行化,但我不知道在哪里以及为什么。以下是我的大部分代码(我省略了一些我认为与问题无关的辅助函数)

public static void main(String[] args) {

    BasicConfigurator.configure();

    conf[0] = new Conf("local[4]");
    conf[1] = new Conf("spark://hadoop-m:7077");
    Conf configuration = conf[1];

    if (args.length != 4) {
        log.error("Error in parameters. Syntax: <input path> <output_path> <filter_factor> <locality>\nfilter_factor is what fraction of sessions to process. For example, to process 1/100 of sessions, use 100\nlocality should be set to \"local\" in case running on local environment, and to \"remote\" otherwise.");
        System.exit(-1);
    }

    final String inputPath = args[0];
    final String outputPath = args[1];
    final Integer filterFactor;

    if (args[3].equals("local")) {
        configuration = conf[0];
    }

    log.setLevel(Level.DEBUG);
    Logger.getRootLogger().removeAppender("console");
    final SparkConf conf = new SparkConf().setAppName("phase0").setMaster(configuration.getMaster());
    conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer");
    conf.set("spark.kryo.registrator", "com.doit.customer.dataconverter.MyRegistrator");
    final JavaSparkContext sc = new JavaSparkContext(conf);
    if (configuration.getMaster().contains("spark:")) {
        sc.addJar("/home/hadoop/hadoop-install/phase0-1.0-SNAPSHOT-jar-with-dependencies.jar");
    }
    try {
        filterFactor = Integer.parseInt(args[2]);
        // read all folders from root
        Path inputPathObj = new Path(inputPath);
        FileSystem fs = FileSystem.get(inputPathObj.toUri(), new Configuration(true));
        FileStatus[] statusArr = fs.globStatus(inputPathObj);
        List<FileStatus> statusList = Arrays.asList(statusArr);

        List<String> pathsStr = convertFileStatusToPath(statusList);

        JavaRDD<String> paths = sc.parallelize(pathsStr);

        // read all files from each folder
        JavaRDD<String> filePaths = paths.mapPartitions(new FlatMapFunction<Iterator<String>, String>() {
            @Override
            public Iterable<String> call(Iterator<String> pathsIterator) throws Exception {
                List<String> filesPath = new ArrayList<String>();
                if (pathsIterator != null) {
                    while (pathsIterator.hasNext()) {
                        String currFolder = pathsIterator.next();
                        Path currPath = new Path(currFolder);
                        FileSystem fs = FileSystem.get(currPath.toUri(), new Configuration(true));
                        FileStatus[] files = fs.listStatus(currPath);
                        List<FileStatus> filesList = Arrays.asList(files);
                        List<String> filesPathsStr = convertFileStatusToPath(filesList);
                        filesPath.addAll(filesPathsStr);
                    }
                }
                return filesPath;
            }
        });

        // Transform list of files to list of all files' content in lines
        JavaRDD<String> typedData = filePaths.map(new Function<String, List<String>>() {
            @Override
            public List<String> call(String filePath) throws Exception {
                Tuple2<String, List<String>> tuple = null;
                try {
                    String fileType = null;
                    List<String> linesList = new ArrayList<String>();
                    Configuration conf = new Configuration();
                    CompressionCodecFactory compressionCodecs = new CompressionCodecFactory(conf);
                    Path path = new Path(filePath);
                    fileType = getType(path.getName());

                    // filter non-trc files
                    if (!path.getName().startsWith("1")) {
                        return linesList;
                    }

                    CompressionCodec codec = compressionCodecs.getCodec(path);
                    FileSystem fs = path.getFileSystem(conf);
                    InputStream in = fs.open(path);
                    if (codec != null) {
                        in = codec.createInputStream(in);
                    } else {
                        throw new IOException();
                    }

                    BufferedReader r = new BufferedReader(new InputStreamReader(in, "UTF-8"), BUFFER_SIZE);

                    // This line will not be added to the list ,
                    // which is what we want - filter the header row
                    String line = r.readLine();

                    // Read all lines
                    while ((line = r.readLine()) != null) {
                        try {
                            String sliceKey = getSliceKey(line, fileType);
                            // Adding event type and output slice key as additional fields
                            linesList.add(fileType + "\t" + sliceKey + "\t" + line);
                        } catch(ParseException e) {
                        }
                    }

                    return linesList;
                } catch (Exception e) { // Filtering of files whose reading went wrong
                    log.error("Reading of the file " + filePath + " went wrong: " + e.getMessage());
                    return new ArrayList();
                }
            }
            // flatten to one big list with all the lines
        }).flatMap(new FlatMapFunction<List<String>, String>() {
            @Override
            public Iterable<String> call(List<String> strings) throws Exception {
                return strings;
            }
        });

        // convert tsv to json

        JavaRDD<ObjectNode> jsons = typedData.mapPartitions(new FlatMapFunction<Iterator<String>, ObjectNode>() {
            @Override
            public Iterable<ObjectNode> call(Iterator<String> stringIterator) throws Exception {
                List<ObjectNode> res = new ArrayList<>();
                while(stringIterator.hasNext()) {
                    String currLine = stringIterator.next();
                    Iterator<String> i = Splitter.on("\t").split(currLine).iterator();
                    if (i.hasNext()) {
                        String type = i.next();
                        ObjectNode json = convert(currLine, type, filterFactor);
                        if(json != null) {
                            res.add(json);
                        }
                    }
                }
                return res;
            }
        }).cache();

        createOutputType(jsons, "Session", outputPath, null);
        createOutputType(jsons, "UserEvent", outputPath, null);
        JavaRDD<ObjectNode> requests = createOutputType(jsons, "Request", outputPath, null);

        // Now leave only the set of request ids - to inner join with the recommendations
        JavaPairRDD<String,String> requestsIds = requests.mapToPair(new PairFunction<ObjectNode, String, String>() {
            @Override
            public Tuple2<String, String> call(ObjectNode jsonNodes) throws Exception {
                String id = jsonNodes.get("id").asText();
                return new Tuple2<String, String>(id,id);
            }
        }).distinct();

        createOutputType(jsons,"RecommendationList", outputPath, requestsIds);

    } catch (IOException e) {
        log.error(e);
        System.exit(1);
    } catch (NumberFormatException e) {
        log.error("filter factor is not a valid number!!");
        System.exit(-1);
    }

    sc.stop();

}

private static JavaRDD<ObjectNode> createOutputType(JavaRDD jsonsList, final String type, String outputPath,JavaPairRDD<String,String> joinKeys) {

    outputPath = outputPath + "/" + type;

    JavaRDD events = jsonsList.filter(new Function<ObjectNode, Boolean>() {
        @Override
        public Boolean call(ObjectNode jsonNodes) throws Exception {
            return jsonNodes.get("type").asText().equals(type);
        }
    });

    // This is in case we need to narrow the list to match some other list of ids... Recommendation List, for example... :)
    if(joinKeys != null) {
        JavaPairRDD<String,ObjectNode> keyedEvents = events.mapToPair(new PairFunction<ObjectNode, String, ObjectNode>() {
            @Override
            public Tuple2<String, ObjectNode> call(ObjectNode jsonNodes) throws Exception {
                return new Tuple2<String, ObjectNode>(jsonNodes.get("requestId").asText(),jsonNodes);
            }
        });

        JavaRDD<ObjectNode> joinedEvents = joinKeys.join(keyedEvents).values().map(new Function<Tuple2<String, ObjectNode>, ObjectNode>() {
           @Override
           public ObjectNode call(Tuple2<String, ObjectNode> stringObjectNodeTuple2) throws Exception {
               return stringObjectNodeTuple2._2;
           }
        });
        events = joinedEvents;
    }

    JavaPairRDD<String,Iterable<ObjectNode>> groupedEvents = events.mapToPair(new PairFunction<ObjectNode, String, ObjectNode>() {
        @Override
        public Tuple2<String, ObjectNode> call(ObjectNode jsonNodes) throws Exception {
            return new Tuple2<String, ObjectNode>(jsonNodes.get("sliceKey").asText(),jsonNodes);
        }
    }).groupByKey();
    // Add convert jsons to strings and add "\n" at the end of each

    JavaPairRDD<String, String> groupedStrings = groupedEvents.mapToPair(new PairFunction<Tuple2<String, Iterable<ObjectNode>>, String, String>() {
        @Override
        public Tuple2<String, String> call(Tuple2<String, Iterable<ObjectNode>> content) throws Exception {
            String string = jsonsToString(content._2);
            log.error(string);
            return new Tuple2<>(content._1, string);
        }
    });
    groupedStrings.saveAsHadoopFile(outputPath, String.class, String.class, KeyBasedMultipleTextOutputFormat.class);
    return events;
}

// Notice the special case of if(joinKeys != null) in which I join the recommendations with request ids.

最后,我用来启动spark作业的命令是:

spark-submit --class com.doit.customer.dataconverter.Phase0 --driver-cores 8 --total-executor-cores 632 --driver-memory 40g --executor-memory 40G --deploy-mode cluster /home/hadoop/hadoop-install/phase0-1.0-SNAPSHOT-jar-with-dependencies.jar gs://input/2014_07_31* gs://output/2014_07_31 100 remote
6g8kf2rb

6g8kf2rb1#

初始分区基于根目录中的文件夹集(sc.parallelize(pathsstr))。在您的流程中有两个步骤可能会严重影响分区的平衡:1)如果某些文件夹的文件比其他文件夹多,则读取每个文件夹中的文件列表;2) 如果某些文件的行数比其他文件多,则从每个文件读取tsv行。
如果文件大小大致相同,但某些文件夹中的文件比其他文件夹中的文件多,则可以在收集文件名后重新平衡分区。设置文件路径的初始值后,请尝试添加此行:

filePaths = filePaths.repartition(sc.defaultParallelism());

这将把收集到的文件名洗牌到平衡分区中。
如果由于某些文件比其他文件大得多而导致不平衡,可以尝试通过类似地调用对其进行重新分区来重新平衡typeddata rdd,尽管这将非常昂贵,因为它将洗牌所有tsv数据。
或者,如果您重新平衡文件路径,但仍有一些分区不平衡,这是由于有许多稍大的文件最终位于几个分区中造成的,那么您可以通过在repartition参数中使用较大的数字来获得更好的性能,例如,乘以4,得到的分区数是内核数的4倍。这将增加一点通信成本,但如果它能更好地平衡typeddata中产生的分区大小,则可能是一个胜利。

相关问题