我在hortonworks沙盒上安装了rhadoop,遵循以下说明:http://www.research.janahang.com/install-rhadoop-on-hortonworks-hdp-2-0/
一切似乎都安装正确了。但是,当我在底部运行测试脚本时,我得到一个错误,似乎需要的能力比集群中支持的最大容器能力要大。干掉这份工作。还原源需求:4096 maxcontainercapability:2250)很可能是我的问题。
如何设置maxcontainercapability?或者解决这个问题?欢迎任何帮助。谢谢
错误输出如下:
Be sure to run hdfs.init()
14/09/09 14:29:25 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/09/09 14:29:27 WARN hdfs.BlockReaderLocal: The short-circuit local reads feature cannot be used because libhadoop cannot be loaded.
packageJobJar: [] [/usr/lib/hadoop-mapreduce/hadoop-streaming-2.4.0.2.1.1.0-385.jar] /tmp/streamjob4407691883964292767.jar tmpDir=null
14/09/09 14:29:29 INFO client.RMProxy: Connecting to ResourceManager at sandbox.hortonworks.com/192.168.32.128:8050
14/09/09 14:29:29 INFO client.RMProxy: Connecting to ResourceManager at sandbox.hortonworks.com/192.168.32.128:8050
14/09/09 14:29:31 INFO mapred.FileInputFormat: Total input paths to process : 1
14/09/09 14:29:32 INFO mapreduce.JobSubmitter: number of splits:2
14/09/09 14:29:32 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1410297633075_0001
14/09/09 14:29:33 INFO impl.YarnClientImpl: Submitted application application_1410297633075_0001
14/09/09 14:29:33 INFO mapreduce.Job: The url to track the job: http://sandbox.hortonworks.com:8088/proxy/application_1410297633075_0001/
14/09/09 14:29:33 INFO mapreduce.Job: Running job: job_1410297633075_0001
14/09/09 14:29:42 INFO mapreduce.Job: Job job_1410297633075_0001 running in uber mode : false
14/09/09 14:29:42 INFO mapreduce.Job: map 100% reduce 100%
14/09/09 14:29:43 INFO mapreduce.Job: Job job_1410297633075_0001 failed with state KILLED due to: MAP capability required is more than the supported max container capability in the cluster. Killing the Job. mapResourceReqt: 4096 maxContainerCapability:2250
Job received Kill while in RUNNING state.
REDUCE capability required is more than the supported max container capability in the cluster. Killing the Job. reduceResourceReqt: 4096 maxContainerCapability:2250
14/09/09 14:29:43 INFO mapreduce.Job: Counters: 2
Job Counters
Total time spent by all maps in occupied slots (ms)=0
Total time spent by all reduces in occupied slots (ms)=0
14/09/09 14:29:43 ERROR streaming.StreamJob: Job not Successful!
Streaming Command Failed!
Error in mr(map = map, reduce = reduce, combine = combine, vectorized.reduce, :
hadoop streaming failed with error code 1
Calls: wordcount -> mapreduce -> mr
Execution halted
14/09/09 14:29:49 INFO fs.TrashPolicyDefault: Namenode trash configuration: Deletion interval = 360 minutes, Emptier interval = 0 minutes.
Moved: 'hdfs://sandbox.hortonworks.com:8020/tmp/file1f937beb4f39' to trash at: hdfs://sandbox.hortonworks.com:8020/user/root/.Trash/Current
2条答案
按热度按时间ymzxtsji1#
这个内存问题不容易解决,但是我切换到cloudera平台,一切都按预期进行。
zvms9eto2#
要在Hortonworks2.1上实现这一点,我必须
将virtualbox内存从4096增加到8192(不知道这是否是绝对必要的)
已从启用ambarihttp://my.local.host:8000
从登录ambarihttp://my.local.host:8080
将yarn.nodemanager.resource.memory-mb和yarn.scheduler.maximum-allocation-mb的值从默认值更改为4096
保存并重新启动所有内容(通过ambari)
这让我通过了“能力要求”错误,但实际的wordcount.r似乎不想完成。不过,像hdfs.ls(“/data”)这样的东西确实有效。