spark中多个枢轴柱的重命名和优化

eeq64g8w  于 2021-06-01  发布在  Hadoop
关注(0)|答案(2)|浏览(322)

我的输入数据中有一组列,我基于这些列旋转。
在完成数据透视后,我遇到了列标题的问题。
输入数据

我的方法产生的输出-

预期的输出标头:
我需要输出的标题看起来像-

到目前为止为实现我得到的结果所做的步骤-

// *Load the data*

scala> val input_data =spark.read.option("header","true").option("inferschema","true").option("delimiter","\t").csv("s3://mybucket/data.tsv")

// *Filter the data where residentFlag column = T*

scala> val filtered_data = input_data.select("numericID","age","salary","gender","residentFlag").filter($"residentFlag".contains("T"))

// *Now we will the pivot the filtered data by each column*

scala> val pivotByAge = filtered_data.groupBy("age","numericID").pivot("age").agg(expr("coalesce(first(numericID),'-')")).drop("age")

// *Pivot the data by the second column named "salary"*

scala> val pivotBySalary = filtered_data.groupBy("salary","numericID").pivot("salary").agg(expr("coalesce(first(numericID),'-')")).drop("salary")

// *Join the above two dataframes based on the numericID*

scala> val intermediateDf = pivotByAge.join(pivotBySalary,"numericID")

// *Now pivot the filtered data on Step 2 on the third column named Gender*

scala> val pivotByGender = filtered_data.groupBy("gender","numericID").pivot("gender").agg(expr("coalesce(first(numericID),'-')")).drop("gender")

// *Join the above dataframe with the intermediateDf*

scala> val outputDF= pivotByGender.join(intermediateDf ,"numericID")

如何重命名旋转后生成的列?
有没有一种不同的方法可以基于多列(将近300列)来旋转数据集?
有没有改进性能的优化/建议?

lsmepo6l

lsmepo6l1#

您可以考虑使用foldleft遍历to pivot列的列表,依次创建pivot dataframe、重命名生成的pivot列,然后是累计联接:

val data = Seq(
  (1, 30, 50000, "M"),
  (1, 25, 70000, "F"),
  (1, 40, 70000, "M"),
  (1, 30, 80000, "M"),
  (2, 30, 80000, "M"),
  (2, 40, 50000, "F"),
  (2, 25, 70000, "F")
).toDF("numericID", "age", "salary", "gender")

// Create list pivotCols which consists columns to pivot
val id = data.columns.head
val pivotCols = data.columns.filter(_ != "numericID")

// Create the first pivot dataframe from the first column in list pivotCols and
// rename each of the generated pivot columns
val c1 = pivotCols.head
val df1 = data.groupBy(c1, id).pivot(c1).agg(expr(s"coalesce(first($id),'-')")).drop(c1)
val df1Renamed = df1.columns.tail.foldLeft( df1 )( (acc, x) =>
      acc.withColumnRenamed(x, c1 + "_" + x)
    )

// Using the first pivot dataframe as the initial dataframe, process each of the
// remaining columns in list pivotCols similar to how the first column is processed,
// and cumulatively join each of them with the previously joined dataframe
pivotCols.tail.foldLeft( df1Renamed )(
  (accDF, c) => {
    val df = data.groupBy(c, id).pivot(c).agg(expr(s"coalesce(first($id),'-')")).drop(c)
    val dfRenamed = df.columns.tail.foldLeft( df )( (acc, x) =>
      acc.withColumnRenamed(x, c + "_" + x)
    )
    dfRenamed.join(accDF, Seq(id))
  }
)

// +---------+--------+--------+------------+------------+------------+------+------+------+
// |numericID|gender_F|gender_M|salary_50000|salary_70000|salary_80000|age_25|age_30|age_40|
// +---------+--------+--------+------------+------------+------------+------+------+------+
// |2        |2       |-       |2           |-           |-           |-     |2     |-     |
// |2        |2       |-       |2           |-           |-           |2     |-     |-     |
// |2        |2       |-       |2           |-           |-           |-     |-     |2     |
// |2        |2       |-       |-           |2           |-           |-     |2     |-     |
// |2        |2       |-       |-           |2           |-           |2     |-     |-     |
// |2        |2       |-       |-           |2           |-           |-     |-     |2     |
// |2        |2       |-       |-           |-           |2           |-     |2     |-     |
// |2        |2       |-       |-           |-           |2           |2     |-     |-     |
// |2        |2       |-       |-           |-           |2           |-     |-     |2     |
// |2        |-       |2       |2           |-           |-           |-     |2     |-     |
// |2        |-       |2       |2           |-           |-           |2     |-     |-     |
// |2        |-       |2       |2           |-           |-           |-     |-     |2     |
// |2        |-       |2       |-           |2           |-           |-     |2     |-     |
// |2        |-       |2       |-           |2           |-           |2     |-     |-     |
// |2        |-       |2       |-           |2           |-           |-     |-     |2     |
// |2        |-       |2       |-           |-           |2           |-     |2     |-     |
// |2        |-       |2       |-           |-           |2           |2     |-     |-     |
// |2        |-       |2       |-           |-           |2           |-     |-     |2     |
// |1        |-       |1       |-           |1           |-           |1     |-     |-     |
// |1        |-       |1       |-           |1           |-           |-     |-     |1     |
// ...
vsnjm48y

vsnjm48y2#

您可以这样做,并使用regex来简化

var outputDF= pivotByGender.join(intermediateDf ,"numericID")

val cols: Array[String] = outputDF.columns

cols
  .foreach{
    cl => cl match {
        case "F" => outputDF = outputDF.withColumnRenamed(cl,s"gender_${cl}")
        case "M" => outputDF = outputDF.withColumnRenamed(cl,s"gender_${cl}")
        case cl.matches("""\\d{2}""") => outputDF = outputDF.withColumnRenamed(cl,s"age_${cl}")

      }
  }

相关问题