/*this is my reducer class. For line "(LongWritable value : values)"--
I am getting error. I am creating project for PDF conversion into TEXT
Reducer Class***/
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class WordCountReducer extends Reducer {
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (LongWritable value : values) {
sum += value.get();
}
context.write(key, new LongWritable(sum));
}
}
//Mapper Class
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
public class WordCountMapper extends
Mapper {
private Text word = new Text();
private final static LongWritable one = new LongWritable(1);
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.progress();
context.write(word, one);
}
}
}
//PDF Record Reder class
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.pdfbox.pdmodel.PDDocument;
import org.apache.pdfbox.util.PDFTextStripper;
public class PdfRecordReader extends RecordReader {
private String[] lines = null;
private LongWritable key = null;
private Text value = null;
@Override
public void initialize(InputSplit genericSplit, TaskAttemptContext context)
throws IOException, InterruptedException {
FileSplit split = (FileSplit) genericSplit;
Configuration job = context.getConfiguration();
final Path file = split.getPath();
/*
* The below code contains the logic for opening the file and seek to
* the start of the split. Here we are applying the Pdf Parsing logic
*/
FileSystem fs = file.getFileSystem(job);
FSDataInputStream fileIn = fs.open(split.getPath());
PDDocument pdf = null;
String parsedText = null;
PDFTextStripper stripper;
pdf = PDDocument.load(fileIn);
stripper = new PDFTextStripper();
parsedText = stripper.getText(pdf);
this.lines = parsedText.split("\n");
}
@Override
public boolean nextKeyValue() throws IOException, InterruptedException {
if (key == null) {
key = new LongWritable();
key.set(1);
value = new Text();
value.set(lines[0]);
} else {
int temp = (int) key.get();
if (temp < (lines.length - 1)) {
int count = (int) key.get();
value = new Text();
value.set(lines[count]);
count = count + 1;
key = new LongWritable(count);
} else {
return false;
}
}
if (key == null || value == null) {
return false;
} else {
return true;
}
}
@Override
public LongWritable getCurrentKey() throws IOException,
InterruptedException {
return key;
}
@Override
public Text getCurrentValue() throws IOException, InterruptedException {
return value;
}
@Override
public float getProgress() throws IOException, InterruptedException {
return 0;
}
@Override
public void close() throws IOException {
}
}
//Pdf_Input_Format class
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
public class PdfInputFormat extends FileInputFormat {
@Override
public RecordReader createRecordReader(
InputSplit split, TaskAttemptContext context) throws IOException,
InterruptedException {
return new PdfRecordReader();
}
}
//Pdf_Input_Driver class
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class PdfInputDriver {
public static void main(String[] args) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = new Configuration();
GenericOptionsParser parser = new GenericOptionsParser(conf, args);
args = parser.getRemainingArgs();
Job job = new Job(conf, "Pdfwordcount");
job.setJarByClass(PdfInputDriver.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
job.setInputFormatClass(PdfInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
System.out.println(job.waitForCompletion(true));
}
}
除了减速机,每个班都很好。如果我改变了:
protected void reduce(Text key, Iterable values,Context context) throws IOException, InterruptedException
到
protected void reduce(Text key, Iterable<LongWritable> values,Context context) throws IOException, InterruptedException
在reducer类中比project编译成功,但是当我使用命令hadoop-jar将exported jar运行到hadoop(ubuntu)中时,我得到以下错误:
17/06/09 13:31:31 INFO mapred.LocalJobRunner: map task executor complete.
17/06/09 13:31:31 WARN mapred.LocalJobRunner: job_local306343177_0001
java.lang.Exception: java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.Text, received org.apache.hadoop.io.LongWritable
at org.apache.hadoop.mapred.LocalJobRunner$Job.runTasks(LocalJobRunner.java:489)
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:549)
Caused by: java.io.IOException: Type mismatch in key from map: expected org.apache.hadoop.io.Text, received org.apache.hadoop.io.LongWritable
at org.apache.hadoop.mapred.MapTask$MapOutputBuffer.collect(MapTask.java:1072)
at org.apache.hadoop.mapred.MapTask$NewOutputCollector.write(MapTask.java:715)
at org.apache.hadoop.mapreduce.task.TaskInputOutputContextImpl.write(TaskInputOutputContextImpl.java:89)
at org.apache.hadoop.mapreduce.lib.map.WrappedMapper$Context.write(WrappedMapper.java:112)
at org.apache.hadoop.mapreduce.Mapper.map(Mapper.java:125)
at org.apache.hadoop.mapreduce.Mapper.run(Mapper.java:146)
at org.apache.hadoop.mapred.MapTask.runNewMapper(MapTask.java:787)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:341)
at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:270)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
17/06/09 13:31:31 INFO mapreduce.Job: Job job_local306343177_0001 running in uber mode : false
17/06/09 13:31:31 INFO mapreduce.Job: map 0% reduce 0%
17/06/09 13:31:31 INFO mapreduce.Job: Job job_local306343177_0001 failed with state FAILED due to: NA
17/06/09 13:31:31 INFO mapreduce.Job: Counters: 0
false
java.lang.Throwable: Warning: You did not close the PDF Document
at org.apache.pdfbox.cos.COSDocument.finalize(COSDocument.java:404)
at java.lang.System$2.invokeFinalize(System.java:1270)
at java.lang.ref.Finalizer.runFinalizer(Finalizer.java:98)
at java.lang.ref.Finalizer.access$100(Finalizer.java:34)
at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:210)
/*My aim is to use PDF as a input from HDFS and convert it into text so it can be useful for hadoop ecosystem, any new suggestion will also appreciable*/
暂无答案!
目前还没有任何答案,快来回答吧!