使用mxnet的hadoop流作业在aws emr中失败

ef1yzkbh  于 2021-06-02  发布在  Hadoop
关注(0)|答案(1)|浏览(543)

我在aws数据管道中设置了一个emr步骤。step命令如下所示:

/usr/lib/hadoop-mapreduce/hadoop-streaming.jar,-input,s3n://input-bucket/input-file,-output,s3://output/output-dir,-mapper,/bin/cat,-reducer,reducer.py,-file,/scripts/reducer.py,-file,/params/parameters.bin

我得到以下错误

Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1
    at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:322)
    at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:535)
    at org.apache.hadoop.streaming.PipeReducer.close(PipeReducer.java:134)
    at org.apache.hadoop.io.IOUtils.cleanup(IOUtils.java:244)
    at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:467)
    at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:393)
    at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
    at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)

Container killed by the ApplicationMaster.
Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143

Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1
    at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:322)
    at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:535)
    at org.apache.hadoop.streaming.PipeReducer.close(PipeReducer.java:134)
    at org.apache.hadoop.io.IOUtils.cleanup(IOUtils.java:244)
    at org.apache.hadoop.mapred.ReduceTask.runOldReducer(ReduceTask.java:467)
    at org.apache.hadoop.mapred.ReduceTask.run(ReduceTask.java:393)
    at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:164)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:422)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1698)
    at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:158)

Container killed by the ApplicationMaster.
Container killed on request. Exit code is 143
Container exited with a non-zero exit code 143

我试过在我的桌面上单独运行reducer步骤(在单节点hadoop设置中)及其工作。我已经包括了 #!/usr/bin/env python 在减速机脚本中。我怀疑我没有正确编写emr步骤。

EMR version: 5.5.0

编辑:经过进一步的调查,我已经找到了确切的代码行,其中减少代码是失败的电子病历。我正在用减速机中的mxnet库进行机器学习预测。当我加载模型参数时,减速机发生故障。此处为api文件参考

module.load_params('parameters.bin')

我已经检查了emr节点的当前工作目录[使用 os.listdir(os.getcwd()) ]它包含了 parameters.bin 文件(我甚至成功地打印了文件内容)。我想再次指出,流作业在我的单节点本地设置上运行良好。
edit2:我将reducer任务数设置为2。我将我的reducer代码包含在try-except块中,我在其中一个任务中看到以下错误(另一个运行正常)

[10:27:25] src/ndarray/ndarray.cc:299: Check failed: from.shape() == to->shape() operands shape mismatchfrom.shape = (119,) to.shape=(111,) 

Stack trace returned 10 entries:    
[bt] (0) /usr/local/lib/python2.7/site-packages/mxnet/libmxnet.so(+0xc72fc) [0x7f81443842fc]    
[bt] (1) /usr/local/lib/python2.7/site-packages/mxnet/libmxnet.so(+0xc166f4) [0x7f8144ed36f4]   
[bt] (2) /usr/local/lib/python2.7/site-packages/mxnet/libmxnet.so(+0xc74c24) [0x7f8144f31c24]   
[bt] (3) /usr/local/lib/python2.7/site-packages/mxnet/libmxnet.so(MXImperativeInvoke+0x2cd) [0x7f8144db935d]    
[bt] (4) /usr/lib64/libffi.so.6(ffi_call_unix64+0x4c) [0x7f8150b8acec]  
[bt] (5) /usr/lib64/libffi.so.6(ffi_call+0x1f5) [0x7f8150b8a615]    
[bt] (6) /usr/lib64/python2.7/lib-dynload/_ctypes.so(_ctypes_callproc+0x30b) [0x7f8150d9d97b]   
[bt] (7) /usr/lib64/python2.7/lib-dynload/_ctypes.so(+0xa915) [0x7f8150d97915]  
[bt] (8) /usr/lib64/libpython2.7.so.1.0(PyObject_Call+0x43) [0x7f815a69e183]    
[bt] (9) /usr/lib64/libpython2.7.so.1.0(PyEval_EvalFrameEx+0x337d) [0x7f815a73107d]
mrphzbgm

mrphzbgm1#

我发现了问题所在。实际上,mxnet所期望的形状依赖于数据集(它实际上依赖于数据集中的最大值)。训练发生在一个gpu盒上,拥有整个数据集。但是,这种预测在单节点设置中效果很好,因为它拥有训练中使用的所有数据。但是当使用多节点集群时,数据集会被分割,使得每个节点的最大值不同。这是导致错误的原因。
我现在已经使预期的形状独立于数据集,这个错误不再发生。我希望这能澄清问题。

相关问题