我有一个rdd的记录,转换成dataframe,我想过滤的日子时间戳,并计算过去30天的统计数据,过滤列和计数的结果。
在进入for循环之前,spark应用程序的速度非常快,所以我想知道这是否是一种反模式的方法,如何才能获得良好的性能,我应该使用spark笛卡尔,如何?
//FILTER PROJECT RECORDS
val clientRecordsDF = recordsDF.filter($"rowkey".contains(""+client_id))
client_records_total = clientRecordsDF.count().toLong
这是clientrecordsdf内容
root
|-- rowkey: string (nullable = true) //CLIENT_ID-RECORD_ID
|-- record_type: string (nullable = true)
|-- device: string (nullable = true)
|-- timestamp: long (nullable = false) // MILLISECOND
|-- datestring: string (nullable = true) // yyyyMMdd
[1-575e7f80673a0,login,desktop,1465810816424,20160613]
[1-575e95fc34568,login,desktop,1465816572216,20160613]
[1-575ef88324eb7,registration,desktop,1465841795153,20160613]
[1-575efe444d2be,registration,desktop,1465843268317,20160613]
[1-575e6b6f46e26,login,desktop,1465805679292,20160613]
[1-575e960ee340f,login,desktop,1465816590932,20160613]
[1-575f1128670e7,action,mobile-phone,1465848104423,20160613]
[1-575c9a01b67fb,registration,mobile-phone,1465686529750,20160612]
[1-575dcfbb109d2,registration,mobile-phone,1465765819069,20160612]
[1-575dcbcb9021c,registration,desktop,1465764811593,20160612]
...
the for loop with bad performances
var dayCounter = 0;
for( dayCounter <- 1 to 30){
//LAST 30 DAYS
// CREATE DAY TIMESTAMP
var cal = Calendar.getInstance(gmt);
cal.add(Calendar.DATE, -dayCounter);
cal.set(Calendar.HOUR_OF_DAY, 0);
cal.set(Calendar.MINUTE, 0);
cal.set(Calendar.SECOND, 0);
cal.set(Calendar.MILLISECOND, 0);
val calTime=cal.getTime()
val dayTime = cal.getTimeInMillis()
cal.set(Calendar.HOUR_OF_DAY, 23);
cal.set(Calendar.MINUTE, 59);
cal.set(Calendar.SECOND, 59);
cal.set(Calendar.MILLISECOND, 999);
val dayTimeEnd = cal.getTimeInMillis()
//FILTER PROJECT RECORDS
val dailyClientRecordsDF = clientRecordsDF.filter(
$"timestamp" >= dayTime && $"timestamp" <= dayTimeEnd
)
val daily_client_records = dailyClientRecordsDF.count().toLong
println("dayCounter "+dayCounter+" records = "+daily_project_records);
// perform other filter on dailyClientRecordsDF
// save daily statistics to hbase
}
}
2条答案
按热度按时间6jjcrrmo1#
这种方法是遵循sql的。首先,我注册了一个要查询的表。然后,我需要定义一个udf(用户定义函数)来将时间戳转换为日期。最后,您需要像在sql中一样,在所需的日期范围内进行筛选和分组。
添加:例如,计数所有记录类型是在30天内注册。
z0qdvdin2#
在几乎所有情况下,都应避免创建自定义项。这样做会阻止catalyst优化器正确处理查询。
相反,请使用内置sql函数: