hadoop减少内存中的无序合并

xoefb8l8  于 2021-06-03  发布在  Hadoop
关注(0)|答案(2)|浏览(497)

我在reduce merge阶段遇到了一些性能问题,不知是否有人可以看一下。我有一个6gb的数据集(文本),均匀分布在集群上,数据集有两个键,然后我将它们分组到两个缩减器中(我使用级联)。所以每个减速机都有3gb的数据。我给每个减速机12 gb的内存,但我仍然看到一个20分钟的合并阶段。
两个问题:这个合并不应该完全在内存中完成吗(如果我有12gb的堆)。即使没有内存合并,20分钟对于合并3gb来说似乎太长了,特别是在一个节点上有12个磁盘(jbod)和12个内核的情况下。我想知道我是否将部分合并数据写入了错误的位置(hdfs,vs local?)。
读取的maprfs\u字节和写入的maprfs\u字节都很有趣。初始数据集是6gb(它显示在map列中)。不知何故,排序将其增加到17gb,这似乎很奇怪。然后在reduce阶段,它从maprfs读取23gb,然后写入17gb。reduce阶段合并数据应该写入maprfs还是本地fs?为什么初始数据集的大小会增长这么多(没有使用压缩,它是纯文本)

Counter     Map     Reduce  Total
Job Counters    Aggregate execution time of mappers(ms)     0   0   29,887,359
Launched reduce tasks   0   0   2
Rack-local map tasks    0   0   4
Launched map tasks  0   0   353
Data-local map tasks    0   0   311
cascading.flow.SliceCounters    Read_Duration   329,399     366,004     695,403
Tuples_Read     252,000,000     67,896,295  319,896,295
Tuples_Written  252,000,000     0   252,000,000
Process_End_Time    476,294,761,317,139     0   476,294,761,317,139
Write_Duration  2,713,840   0   2,713,840
Process_Begin_Time  476,294,753,764,176     2,698,557,228,678   478,993,310,992,854
FileSystemCounters  MAPRFS_BYTES_READ   6,651,978,400   21,721,014,791  28,372,993,191
MAPRFS_BYTES_WRITTEN    17,044,716,578  17,044,701,398  34,089,417,976
FILE_BYTES_WRITTEN  19,046,005  107,748     19,153,753
Map-Reduce Framework    Map input records   252,000,000     0   252,000,000
Reduce shuffle bytes    0   16,980,659,887  16,980,659,887
Spilled Records     252,000,000     0   252,000,000
Map output bytes    16,540,701,046  0   16,540,701,046
CPU_MILLISECONDS    18,861,020  7,640,360   26,501,380
Map input bytes     6,644,947,675   0   6,644,947,675
Combine input records   0   0   0
SPLIT_RAW_BYTES     97,428  0   97,428
Reduce input records    0   67,896,295  67,896,295
Reduce input groups     0   2   2
Combine output records  0   0   0
PHYSICAL_MEMORY_BYTES   324,852,019,200     15,041,486,848  339,893,506,048
Reduce output records   0   0   0
VIRTUAL_MEMORY_BYTES    626,863,038,464     26,729,230,336  653,592,268,800
Map output records  252,000,000     0   252,000,000
GC time elapsed (ms)    1,568,523   76,636  1,645,159
cascading.flow.StepCounters     Tuples_Read     252,000,000     0   252,000,000
name    value
fs.s3n.impl org.apache.hadoop.fs.s3native.NativeS3FileSystem
mapreduce.heartbeat.100 1000
mapred.task.cache.levels    2
hadoop.tmp.dir  /tmp/hadoop-${user.name}
hadoop.native.lib   true
map.sort.class  org.apache.hadoop.util.QuickSort
mapreduce.jobtracker.recovery.dir   /var/mapr/cluster/mapred/jobTracker/recovery
mapreduce.heartbeat.1000    10000
ipc.client.idlethreshold    4000
mapred.system.dir   /var/mapr/cluster/mapred/jobTracker/system
mapreduce.cluster.reduce.userlog.retain-size    10485760
mapred.job.tracker.persist.jobstatus.hours  0
io.skip.checksum.errors false
fs.default.name maprfs:///
mapred.cluster.reduce.memory.mb -1
mapred.child.tmp    ./tmp
fs.har.impl.disable.cache   true
mapred.jobtracker.jobhistory.lru.cache.size 5
mapred.skip.reduce.max.skip.groups  0
cascading.flow.step.num 1
mapred.jobtracker.instrumentation   org.apache.hadoop.mapred.JobTrackerMetricsInst
mapr.localvolumes.path  /var/mapr/local
mapred.tasktracker.dns.nameserver   default
io.sort.factor  50
mapred.output.value.groupfn.class   cascading.tuple.hadoop.util.GroupingComparator
mapreduce.use.maprfs    true
mapred.task.timeout 600000
mapred.max.tracker.failures 4
hadoop.rpc.socket.factory.class.default org.apache.hadoop.net.StandardSocketFactory
mapred.mapoutput.key.class  cascading.tuple.io.TuplePair
fs.hdfs.impl    org.apache.hadoop.hdfs.DistributedFileSystem
mapred.queue.default.acl-administer-jobs    
mapred.output.key.class org.apache.hadoop.io.Text
mapred.skip.map.auto.incr.proc.count    true
mapred.map.runner.class cascading.flow.hadoop.FlowMapper
mapreduce.job.complete.cancel.delegation.tokens true
mapreduce.tasktracker.heapbased.memory.management   false
io.mapfile.bloom.size   1048576
tasktracker.http.threads    2
mapred.job.shuffle.merge.percent    0.70
cascading.flow.id   853276BF02049D394C31880B08C9E6CC
mapred.child.renice 10
fs.ftp.impl org.apache.hadoop.fs.ftp.FTPFileSystem
user.name   jdavis
mapred.fairscheduler.smalljob.max.inputsize 10737418240
mapred.output.compress  false
io.bytes.per.checksum   512
mapred.healthChecker.script.timeout 600000
topology.node.switch.mapping.impl   org.apache.hadoop.net.ScriptBasedMapping
mapred.reduce.slowstart.completed.maps  0.95
mapred.reduce.max.attempts  4
fs.ramfs.impl   org.apache.hadoop.fs.InMemoryFileSystem
mapr.localoutput.dir    output
mapred.skip.map.max.skip.records    0
mapred.jobtracker.port  9001
mapred.cluster.map.memory.mb    -1
mapreduce.tasktracker.prefetch.maptasks 1.0
hadoop.security.group.mapping   org.apache.hadoop.security.ShellBasedUnixGroupsMapping
mapreduce.tasktracker.task.slowlaunch   false
mapred.job.tracker.persist.jobstatus.dir    /var/mapr/cluster/mapred/jobTracker/jobsInfo
mapred.jar  /var/mapr/cluster/mapred/jobTracker/staging/jdavis/.staging/job_201210022148_0086/job.jar
fs.s3.buffer.dir    ${hadoop.tmp.dir}/s3
job.end.retry.attempts  0
fs.file.impl    org.apache.hadoop.fs.LocalFileSystem
cascading.app.name  omeg
mapred.local.dir.minspacestart  0
mapred.output.compression.type  RECORD
fs.mapr.working.dir /user/$USERNAME/
fs.maprfs.impl  com.mapr.fs.MapRFileSystem
fs.https.impl   cascading.tap.hadoop.io.HttpFileSystem
topology.script.number.args 100
io.mapfile.bloom.error.rate 0.005
mapred.cluster.max.reduce.memory.mb -1
mapred.max.tracker.blacklists   4
mapred.task.profile.maps    0-2
mapred.userlog.retain.hours 24
mapred.job.tracker.persist.jobstatus.active false
hadoop.security.authorization   false
local.cache.size    10737418240
mapred.min.split.size   0
mapred.map.tasks    353
mapred.tasktracker.task-controller.config.overwrite true
cascading.app.appjar.path   /home/jdavis/tmp/omeg.jar
mapred.output.value.class   org.apache.hadoop.io.Text
mapred.partitioner.class    cascading.tuple.hadoop.util.GroupingPartitioner
mapreduce.maprfs.use.compression    true
mapred.job.queue.name   default
mapreduce.tasktracker.reserved.physicalmemory.mb.low    0.90
cascading.group.comparator.size 3
ipc.server.listen.queue.size    128
group.name  common
mapred.inmem.merge.threshold    0
job.end.retry.interval  30000
mapred.fairscheduler.smalljob.max.maps  10
mapred.skip.attempts.to.start.skipping  2
fs.checkpoint.dir   ${hadoop.tmp.dir}/dfs/namesecondary
mapred.reduce.tasks 2
mapred.merge.recordsBeforeProgress  10000
mapred.userlog.limit.kb 0
mapred.job.reduce.memory.mb -1
webinterface.private.actions    true
io.sort.spill.percent   0.99
mapred.job.shuffle.input.buffer.percent 0.80
mapred.job.name [853276BF02049D394C31880B08C9E6CC/DCB7B555F1FC65C767B8E2CD716607AA] copyr/(1/1) /user/jdavis/ctest/end
mapred.map.tasks.speculative.execution  false
hadoop.util.hash.type   murmur
mapred.map.max.attempts 4
mapreduce.job.acl-view-job

mapred.job.tracker.handler.count    10
mapred.input.format.class   cascading.tap.hadoop.io.MultiInputFormat
mapred.tasktracker.expiry.interval  600000
mapred.jobtracker.maxtasks.per.job  -1
mapred.jobtracker.job.history.block.size    3145728
keep.failed.task.files  false
mapred.output.format.class  org.apache.hadoop.mapred.TextOutputFormat
ipc.client.tcpnodelay   false
mapred.task.profile.reduces 0-2
mapred.output.compression.codec org.apache.hadoop.io.compress.DefaultCodec
io.map.index.skip   0
mapred.working.dir  /user/jdavis
ipc.server.tcpnodelay   false
hadoop.proxyuser.root.hosts 
mapred.reducer.class    cascading.flow.hadoop.FlowReducer
cascading.app.id    A593B4669179BB6F06771249E7ADFA48
mapred.used.genericoptionsparser    true
jobclient.progress.monitor.poll.interval    1000
mapreduce.tasktracker.jvm.idle.time 10000
mapred.job.map.memory.mb    -1
hadoop.logfile.size 10000000
mapred.reduce.tasks.speculative.execution   false
mapreduce.job.dir   maprfs:/var/mapr/cluster/mapred/jobTracker/staging/jdavis/.staging/job_201210022148_0086
mapreduce.tasktracker.outofband.heartbeat   true
mapreduce.reduce.input.limit    -1
mapred.tasktracker.ephemeral.tasks.ulimit   4294967296>
fs.s3n.block.size   67108864
fs.inmemory.size.mb 200
mapred.fairscheduler.smalljob.max.reducers  10
hadoop.security.authentication  simple
fs.checkpoint.period    3600
cascading.flow.step.id  DCB7B555F1FC65C767B8E2CD716607AA
mapred.job.reuse.jvm.num.tasks  -1
mapred.jobtracker.completeuserjobs.maximum  5
mapreduce.cluster.map.userlog.retain-size   10485760
mapred.task.tracker.task-controller org.apache.hadoop.mapred.LinuxTaskController
mapred.output.key.comparator.class  cascading.tuple.hadoop.util.GroupingSortingComparator
fs.s3.maxRetries    4
mapred.cluster.max.map.memory.mb    -1
mapred.mapoutput.value.class    cascading.tuple.Tuple
mapred.map.child.java.opts  -XX:ErrorFile=/opt/cores/mapreduce_java_error%p.log
mapred.job.tracker.history.completed.location   /var/mapr/cluster/mapred/jobTracker/history/done
mapred.local.dir    /tmp/mapr-hadoop/mapred/local
fs.hftp.impl    org.apache.hadoop.hdfs.HftpFileSystem
fs.trash.interval   0
fs.s3.sleepTimeSeconds  10
mapred.submit.replication   10
fs.har.impl org.apache.hadoop.fs.HarFileSystem
mapreduce.heartbeat.10  300
cascading.version   Concurrent, Inc - Cascading 2.0.5
mapred.map.output.compression.codec org.apache.hadoop.io.compress.DefaultCodec
mapred.tasktracker.dns.interface    default
hadoop.proxyuser.root.groups    root
mapred.job.tracker  maprfs:///
mapreduce.job.submithost    c10-m001.wowrack.upstream.priv
mapreduce.tasktracker.cache.local.numberdirectories 10000
io.seqfile.sorter.recordlimit   1000000
mapreduce.heartbeat.10000   100000
mapred.line.input.format.linespermap    1
mapred.jobtracker.taskScheduler org.apache.hadoop.mapred.FairScheduler
mapred.tasktracker.instrumentation  org.apache.hadoop.mapred.TaskTrackerMetricsInst
mapred.tasktracker.taskmemorymanager.killtask.maxRSS    false
mapred.child.taskset    true
jobclient.completion.poll.interval  5000
mapred.fairscheduler.smalljob.max.reducer.inputsize 1073741824
mapred.local.dir.minspacekill   0
io.sort.record.percent  0.28
mapr.localspill.dir spill
io.compression.codec.lzo.class  com.hadoop.compression.lzo.LzoCodec
fs.kfs.impl org.apache.hadoop.fs.kfs.KosmosFileSystem
mapred.tasktracker.reduce.tasks.maximum (CPUS > 2) ? (CPUS * 0.70): 1
mapred.temp.dir ${hadoop.tmp.dir}/mapred/temp
mapred.tasktracker.ephemeral.tasks.maximum  1
fs.checkpoint.edits.dir ${fs.checkpoint.dir}
mapred.tasktracker.tasks.sleeptime-before-sigkill   5000
mapred.job.reduce.input.buffer.percent  0.0
mapred.tasktracker.indexcache.mb    10
mapreduce.task.classpath.user.precedence    false
mapreduce.job.split.metainfo.maxsize    -1
hadoop.logfile.count    10
fs.automatic.close  true
mapred.skip.reduce.auto.incr.proc.count true
mapreduce.job.submithostaddress 10.100.0.99
mapred.child.oom_adj    10
io.seqfile.compress.blocksize   1000000
fs.s3.block.size    67108864
mapred.tasktracker.taskmemorymanager.monitoring-interval    3000
mapreduce.tasktracker.volume.healthcheck.interval   60000
mapred.cluster.ephemeral.tasks.memory.limit.mb  200
mapreduce.jobtracker.staging.root.dir   /var/mapr/cluster/mapred/jobTracker/staging
mapred.acls.enabled false
mapred.queue.default.state  RUNNING
mapred.fairscheduler.smalljob.schedule.enable   false
mapred.queue.names  default
fs.hsftp.impl   org.apache.hadoop.hdfs.HsftpFileSystem
mapred.fairscheduler.eventlog.enabled   false
mapreduce.jobtracker.recovery.maxtime   480
mapred.task.tracker.http.address    0.0.0.0:50060
mapreduce.jobtracker.inline.setup.cleanup   false
mapred.reduce.parallel.copies   40
io.seqfile.lazydecompress   true
mapred.tasktracker.ephemeral.tasks.timeout  10000
mapred.output.dir   maprfs:/user/jdavis/ctest/end
mapreduce.tasktracker.group root
hadoop.workaround.non.threadsafe.getpwuid   false
io.sort.mb  512
mapred.reduce.child.java.opts   -Xmx12000m
ipc.client.connection.maxidletime   10000
mapred.compress.map.output  false
hadoop.security.uid.cache.secs  14400
mapred.task.tracker.report.address  127.0.0.1:0
mapred.healthChecker.interval   60000
ipc.client.kill.max 10
ipc.client.connect.max.retries  10
fs.http.impl    cascading.tap.hadoop.io.HttpFileSystem
fs.s3.impl  org.apache.hadoop.fs.s3.S3FileSystem
mapred.fairscheduler.assignmultiple true
mapred.user.jobconf.limit   5242880
mapred.input.dir    maprfs:/user/jdavis/ctest/mid
mapred.job.tracker.http.address 0.0.0.0:50030
io.file.buffer.size 131072
mapred.jobtracker.restart.recover   true
io.serializations   cascading.tuple.hadoop.TupleSerialization,org.apache.hadoop.io.serializer.WritableSerialization
mapreduce.use.fastreduce    false
mapred.reduce.copy.backoff  300
mapred.task.profile false
mapred.jobtracker.retiredjobs.cache.size    300
jobclient.output.filter FAILED
mapred.tasktracker.map.tasks.maximum    (CPUS > 2) ? (CPUS * 0.80) : 1
io.compression.codecs   org.apache.hadoop.io.compress.GzipCodec,org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.BZip2Codec,com.hadoop.compression.lzo.LzoCodec,com.hadoop.compression.lzo.LzopCodec
fs.checkpoint.size  67108864
cascading.sort.comparator.size  3
2012-10-02 19:30:50,676 INFO org.apache.hadoop.metrics.jvm.JvmMetrics: Initializing JVM Metrics with processName=SHUFFLE, sessionId=
2012-10-02 19:30:50,737 INFO org.apache.hadoop.mapreduce.util.ProcessTree: setsid exited with exit code 0
2012-10-02 19:30:50,742 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: /proc/<pid>/status does not have information about swap space used(VmSwap). Can not track swap usage of a task.
2012-10-02 19:30:50,742 INFO org.apache.hadoop.mapred.Task:  Using ResourceCalculatorPlugin : org.apache.hadoop.mapreduce.util.LinuxResourceCalculatorPlugin@27b62aab
2012-10-02 19:30:50,903 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 9115 may have finished in the interim.
2012-10-02 19:31:01,663 INFO org.apache.hadoop.mapred.Merger: Merging 37 sorted segments
2012-10-02 19:31:01,672 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 36 segments left of total size: 1204882102 bytes
2012-10-02 19:31:03,079 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 7596 may have finished in the interim.
2012-10-02 19:31:15,487 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 4803 may have finished in the interim.
2012-10-02 19:31:15,489 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 11069 may have finished in the interim.
2012-10-02 19:33:37,821 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 20846 may have finished in the interim.
2012-10-02 19:33:59,274 INFO org.apache.hadoop.mapred.Merger: Merging 35 sorted segments
2012-10-02 19:33:59,275 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 35 segments left of total size: 1176895576 bytes
2012-10-02 19:34:02,131 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 21791 may have finished in the interim.
2012-10-02 19:34:29,927 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 22847 may have finished in the interim.
2012-10-02 19:36:32,181 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 30438 may have finished in the interim.
2012-10-02 19:37:18,243 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 3852 may have finished in the interim.
2012-10-02 19:37:26,292 INFO org.apache.hadoop.mapred.Merger: Merging 37 sorted segments
2012-10-02 19:37:26,293 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 37 segments left of total size: 1233203028 bytes
2012-10-02 19:39:07,695 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 9813 may have finished in the interim.
2012-10-02 19:39:10,764 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 10045 may have finished in the interim.
2012-10-02 19:39:56,829 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 17383 may have finished in the interim.
2012-10-02 19:40:18,295 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 19584 may have finished in the interim.
2012-10-02 19:40:32,307 INFO org.apache.hadoop.mapred.Merger: Merging 58 sorted segments
2012-10-02 19:40:32,308 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 44 segments left of total size: 1206978885 bytes
2012-10-02 19:41:35,154 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 26361 may have finished in the interim.
2012-10-02 19:43:53,644 INFO org.apache.hadoop.mapred.Merger: Merging 56 sorted segments
2012-10-02 19:43:53,645 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 56 segments left of total size: 1217287352 bytes
2012-10-02 19:46:55,246 INFO org.apache.hadoop.mapred.Merger: Merging 44 sorted segments
2012-10-02 19:46:55,246 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 44 segments left of total size: 1221163604 bytes
2012-10-02 19:49:57,894 INFO org.apache.hadoop.mapred.Merger: Merging 85 sorted segments
2012-10-02 19:49:57,895 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 62 segments left of total size: 1229975233 bytes
2012-10-02 19:52:09,914 WARN org.apache.hadoop.mapreduce.util.ProcfsBasedProcessTree: The process 25247 may have finished in the interim.
2012-10-02 19:52:52,620 INFO org.apache.hadoop.mapred.Merger: Merging 1 sorted segments
2012-10-02 19:52:52,620 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 32065409 bytes
2012-10-02 19:52:53,327 INFO org.apache.hadoop.mapred.Merger: Merging 8 sorted segments
2012-10-02 19:52:53,345 INFO org.apache.hadoop.mapred.Merger: Down to the last merge-pass, with 8 segments left of total size: 8522450575 bytes
2012-10-02 19:52:53,366 INFO cascading.flow.hadoop.FlowReducer: cascading version: Concurrent, Inc - Cascading 2.0.5
juzqafwq

juzqafwq1#

好吧,我来回答你的第一个问题。仅仅给hadoop更多的内存并期望它使用它,事情会自动变得更快是不够的(尽管这很好!)。但是您需要调整配置属性以利用内存。i、 e.io.sort.mb是一种有助于加快合并/洗牌阶段的设置。
http://hadoop.apache.org/docs/r0.20.2/mapred-default.html 是大多数配置属性的列表。http://www.slideshare.net/cloudera/mr-perf 给出了一些关于加速合并的明确建议(幻灯片15)。
启用中间输出(mapred.compress.map.output)的压缩通常也会加快速度。
约翰内斯

uqjltbpv

uqjltbpv2#

这并不是所有问题的答案,但我可以解释,为什么要传输这么多数据。
cogroup用原始输入的标记标记每个键。因此,如果您的数据只包含2个键,那么很容易看到,数据的大小可以很容易地增加一倍(小键+类似大小的标记)。这将为您提供17gb的数据。
接下来,353个Map器每个处理17mb(非常小,您有很多小的输入文件吗?),默认情况下,每个Map器应该接收块大小的数据(mapr不在job.xml中公开它的大小,所以不知道您的块有多大),但是在64gb的情况下,您应该使用更小的Map器(大约100)来处理这些数据。
实际上我不知道mapr direct shuffle(tm)是如何工作的(现在正在调查),但是看起来mappers输出是被maprfs编写/公开的。因此,shuffle/sort phase in reducer直接从maprfs下载这些部分。这给了我们17gb(你可以在你的日志大小总和)。但是,从哪里额外的6gb出现-不知道。可能这个问题可以发送到mapr支持。

相关问题