hadoop/mapreduce reducer不工作

68de4m5k  于 2021-06-03  发布在  Hadoop
关注(0)|答案(1)|浏览(396)

我从github下载了k-means算法(在hadoop中)。。但是,这只适用于Map器(因为输出文件名是“part-m-00000”),我希望减少输出文件。
我的hdfs命令:./bin/hadoop jar kmeans.jar主输入输出
请。。有人帮帮我!!!!
这是主课堂

import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class Main{
    /**
     * @param args
     * @throws IOException 
     * @throws ClassNotFoundException 
     * @throws InterruptedException 
     */

    static enum Counter{
        CONVERGED
    }

    public static final String CENTROIDS = "centroids";

    public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {

        int iteration = 1;
        long changes = 0;
        Path dataPath = new Path(args[0]);

        //read in the initial cluster centroids.
        Configuration centroidConf = new Configuration();
        Job centroidInputJob = new Job(centroidConf);
        centroidInputJob.setJobName("KMeans Centroid Input");
        centroidInputJob.setJarByClass(Main.class);

        Path centroidsPath = new Path("centroids_0");

        centroidInputJob.setMapperClass(KmeansCentroidInputMapper.class);

        // No Combiner, no Reducer.

        centroidInputJob.setMapOutputKeyClass(Text.class);
        centroidInputJob.setMapOutputValueClass(Text.class);
        centroidInputJob.setOutputKeyClass(Text.class);
        centroidInputJob.setOutputValueClass(Text.class);

        FileInputFormat.addInputPath(centroidInputJob,new Path(args[1]) );
        FileOutputFormat.setOutputPath(centroidInputJob, centroidsPath);
        centroidInputJob.setNumReduceTasks(0);

        if (!centroidInputJob.waitForCompletion(true)) {
            System.err.println("Centroid input job failed!");
            System.exit(1);
        }

        while(true){
            Configuration conf = new Configuration();
            Path nextIter = new Path(String.format("centroids_%s", iteration));
            Path prevIter = new Path(String.format("centroids_%s", iteration - 1));
            conf.set(Main.CENTROIDS, prevIter.toString());

            Job job = new Job(conf);
            job.setJobName("Kmeans " + iteration);
            job.setJarByClass(Main.class);

            job.setJobName("KMeans "+ iteration);

            //Set Mapper, Combiner, and Reducer
            job.setMapperClass(MapClass.class);
            job.setReducerClass(ReduceClass.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Text.class);
            job.setNumReduceTasks(1);
            job.setCombinerClass(CombineClass.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);

            //Set input/output paths
            FileInputFormat.addInputPath(job, dataPath);
            FileOutputFormat.setOutputPath(job, nextIter);

            job.setNumReduceTasks(1);
            job.waitForCompletion(true);
            iteration++;
            changes = job.getCounters().findCounter(Main.Counter.CONVERGED).getValue();
            job.getCounters().findCounter(Main.Counter.CONVERGED).setValue(0);
            if(changes<=0){
                break;
            }       
        }   
    }

}

源代码:https://github.com/yezhang1989/k-means-clustering-on-mapreduce

gab6jxml

gab6jxml1#

请指挥

job.setNumReduceTasks(1);

检查它是否工作。
mapreduce作业的默认缩减器为1,因此不必将其设置为1
job.setnumreducetasks(0);reducer任务不会运行,输出文件依赖于Map的编号( part-m-00000 ).

相关问题