对于某些要求,我想将文本文件(分隔)转换为orc(优化的行-列)格式。因为我必须定期运行它,所以我想编写一个java程序来实现这一点。我不想使用配置单元临时表解决方法。有人能帮我吗?下面是我试过的
/*ORCMapper.java*/
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.hive.ql.io.orc.*;
import org.apache.hadoop.io.*;
public class ORCMapper extends MapReduceBase implements
Mapper<LongWritable, Text, NullWritable, Writable>{
OrcSerde serde;
@Override
public void configure(JobConf job) {
serde = new OrcSerde();
}
@Override
public void map(LongWritable key, Text value,
OutputCollector<NullWritable, Writable> output, Reporter reporter)
throws IOException {
output.collect(NullWritable.get(),serde.serialize(value, null));
}
}
/*ORCReducer.java*/
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
public class ORCReducer extends MapReduceBase implements Reducer<NullWritable, Writable, NullWritable, Writable>{
@Override
public void reduce(NullWritable key, Iterator<Writable> values,
OutputCollector<NullWritable, Writable> output, Reporter reporter)
throws IOException {
Writable value = values.next();
output.collect(key, value);
}
}
/*ORCDriver.java*/
import java.io.*;
import org.apache.hadoop.fs.*;
import org.apache.hadoop.hive.ql.io.orc.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
public class ORCDriver {
public static void main(String[] args) throws IOException,
InterruptedException, ClassNotFoundException {
JobClient client = new JobClient();
JobConf conf = new JobConf("ORC_Generator");
conf.setInputFormat(TextInputFormat.class);
conf.setOutputKeyClass(NullWritable.class);
conf.setOutputValueClass(Writable.class);
conf.setOutputFormat(OrcOutputFormat.class);
FileInputFormat.addInputPath(conf, new Path("hdfs://localhost:9000/path/to/ipdir/textfile"));
OrcOutputFormat.setOutputPath(conf, new Path("hdfs://localhost:9000/path/to/opdir/orcfile"));
conf.setMapperClass(ORCMapper.class);
System.out.println(OrcOutputFormat.getWorkOutputPath(conf));
conf.setNumReduceTasks(0);
client.setConf(conf);
try {
JobClient.runJob(conf);
} catch (Exception e) {
e.printStackTrace();
}
}
}
运行此命令将显示以下错误,并在本地文件中生成名为part-00000的文件
java.io.IOException: File already exists:part-00000
at org.apache.hadoop.fs.RawLocalFileSystem.create(RawLocalFileSystem.java:249)
at org.apache.hadoop.fs.RawLocalFileSystem.create(RawLocalFileSystem.java:241)
at org.apache.hadoop.fs.ChecksumFileSystem$ChecksumFSOutputSummer.<init>(ChecksumFileSystem.java:335)
at org.apache.hadoop.fs.ChecksumFileSystem.create(ChecksumFileSystem.java:381)
at org.apache.hadoop.fs.ChecksumFileSystem.create(ChecksumFileSystem.java:364)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:564)
at org.apache.hadoop.fs.FileSystem.create(FileSystem.java:545)
at org.apache.hadoop.hive.ql.io.orc.WriterImpl.ensureWriter(WriterImpl.java:1672)
at org.apache.hadoop.hive.ql.io.orc.WriterImpl.flushStripe(WriterImpl.java:1688)
at org.apache.hadoop.hive.ql.io.orc.WriterImpl.close(WriterImpl.java:1868)
at org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat$OrcRecordWriter.close(OrcOutputFormat.java:95)
at org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat$OrcRecordWriter.close(OrcOutputFormat.java:80)
at org.apache.hadoop.mapred.MapTask$DirectMapOutputCollector.close(MapTask.java:833)
at org.apache.hadoop.mapred.MapTask.closeQuietly(MapTask.java:1763)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:439)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:366)
at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:223)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
14/09/02 11:23:26 INFO mapred.LocalJobRunner: Map task executor complete.
14/09/02 11:23:26 WARN mapred.LocalJobRunner: job_local688970064_0001
java.lang.Exception: java.lang.NullPointerException
at org.apache.hadoop.mapred.LocalJobRunner$Job.run(LocalJobRunner.java:354)
Caused by: java.lang.NullPointerException
at org.apache.hadoop.hive.ql.io.orc.WriterImpl.createTreeWriter(WriterImpl.java:1515)
at org.apache.hadoop.hive.ql.io.orc.WriterImpl.<init>(WriterImpl.java:154)
at org.apache.hadoop.hive.ql.io.orc.OrcFile.createWriter(OrcFile.java:258)
at org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat$OrcRecordWriter.write(OrcOutputFormat.java:63)
at org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat$OrcRecordWriter.write(OrcOutputFormat.java:46)
at org.apache.hadoop.mapred.MapTask$DirectMapOutputCollector.collect(MapTask.java:847)
at org.apache.hadoop.mapred.MapTask$OldOutputCollector.collect(MapTask.java:591)
at ORCMapper.map(ORCMapper.java:42)
at ORCMapper.map(ORCMapper.java:1)
at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:50)
at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:430)
at org.apache.hadoop.mapred.MapTask.run(MapTask.java:366)
at org.apache.hadoop.mapred.LocalJobRunner$Job$MapTaskRunnable.run(LocalJobRunner.java:223)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
14/09/02 11:23:26 INFO mapred.JobClient: map 0% reduce 0%
14/09/02 11:23:26 INFO mapred.JobClient: Job complete: job_local688970064_0001
14/09/02 11:23:26 INFO mapred.JobClient: Counters: 0
14/09/02 11:23:26 INFO mapred.JobClient: Job Failed: NA
java.io.IOException: Job failed!
at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:1357)
at ORCDriver.main(ORCDriver.java:53)
2条答案
按热度按时间8tntrjer1#
可以通过以下命令将文本数据插入orc表:
第一个表由以下命令创建:
texttable的结构与orctable相同。
wvt8vs2t2#
您可以使用spark dataframes很容易地将分隔文件转换为orc格式。您还可以指定/强制架构并筛选特定的列。
确保满足所有依赖项,配置单元也应运行以使用hivecontext,目前仅支持spark orc格式的hivecontext。