pyspark structured streaming+kafka错误(原因:java.lang.classnotfoundexception:org.apache.spark.sql.sources.v2.streamwritesupport)

siv3szwd  于 2021-06-04  发布在  Kafka
关注(0)|答案(2)|浏览(622)

当我运行命令时,我正在尝试运行python spark structured streaming+kafka

Master@MacBook-Pro spark-3.0.0-preview2-bin-hadoop2.7 % bin/spark-submit --packages org.apache.spark:spark-sql-kafka-0-10_2.12:2.4.5 \
examples/src/main/python/sql/streaming/structured_kafka_wordcount.py \
/Users/Master/Projects/bank_kafka_spark/spark_job1.py localhost:9092 transaction

接收下一个

20/04/22 13:06:04 WARN Utils: Your hostname, MacBook-Pro.local resolves to a loopback address: 127.0.0.1; using 192.168.0.103 instead (on interface en0)
20/04/22 13:06:04 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address
WARNING: An illegal reflective access operation has occurred
WARNING: Illegal reflective access by org.apache.spark.unsafe.Platform (file:/Users/Master/Projects/spark-3.0.0-preview2-bin-hadoop2.7/jars/spark-unsafe_2.12-3.0.0-preview2.jar) to constructor java.nio.DirectByteBuffer(long,int)
WARNING: Please consider reporting this to the maintainers of org.apache.spark.unsafe.Platform
WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective access operations
WARNING: All illegal access operations will be denied in a future release
Ivy Default Cache set to: /Users/Master/.ivy2/cache
The jars for the packages stored in: /Users/Master/.ivy2/jars
:: loading settings :: url = jar:file:/Users/Master/Projects/spark-3.0.0-preview2-bin-hadoop2.7/jars/ivy-2.4.0.jar!/org/apache/ivy/core/settings/ivysettings.xml
org.apache.spark#spark-sql-kafka-0-10_2.12 added as a dependency
:: resolving dependencies :: org.apache.spark#spark-submit-parent-cd5905ea-5f80-4b14-995d-6ba03a353bb0;1.0
        confs: [default]
        found org.apache.spark#spark-sql-kafka-0-10_2.12;2.4.5 in central
        found org.apache.kafka#kafka-clients;2.0.0 in central
        found org.lz4#lz4-java;1.4.0 in central
        found org.xerial.snappy#snappy-java;1.1.7.3 in central
        found org.slf4j#slf4j-api;1.7.16 in central
        found org.spark-project.spark#unused;1.0.0 in local-m2-cache
:: resolution report :: resolve 315ms :: artifacts dl 6ms
        :: modules in use:
        org.apache.kafka#kafka-clients;2.0.0 from central in [default]
        org.apache.spark#spark-sql-kafka-0-10_2.12;2.4.5 from central in [default]
        org.lz4#lz4-java;1.4.0 from central in [default]
        org.slf4j#slf4j-api;1.7.16 from central in [default]
        org.spark-project.spark#unused;1.0.0 from local-m2-cache in [default]
        org.xerial.snappy#snappy-java;1.1.7.3 from central in [default]
        ---------------------------------------------------------------------
        |                  |            modules            ||   artifacts   |
        |       conf       | number| search|dwnlded|evicted|| number|dwnlded|
        ---------------------------------------------------------------------
        |      default     |   6   |   0   |   0   |   0   ||   6   |   0   |
        ---------------------------------------------------------------------
:: retrieving :: org.apache.spark#spark-submit-parent-cd5905ea-5f80-4b14-995d-6ba03a353bb0
        confs: [default]
        0 artifacts copied, 6 already retrieved (0kB/6ms)
20/04/22 13:06:04 DEBUG NativeCodeLoader: Trying to load the custom-built native-hadoop library...
20/04/22 13:06:04 DEBUG NativeCodeLoader: Failed to load native-hadoop with error: java.lang.UnsatisfiedLinkError: no hadoop in java.library.path: [/Users/Master/Library/Java/Extensions, /Library/Java/Extensions, /Network/Library/Java/Extensions, /System/Library/Java/Extensions, /usr/lib/java, .]
20/04/22 13:06:04 DEBUG NativeCodeLoader: java.library.path=/Users/Master/Library/Java/Extensions:/Library/Java/Extensions:/Network/Library/Java/Extensions:/System/Library/Java/Extensions:/usr/lib/java:.
20/04/22 13:06:04 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Traceback (most recent call last):
  File "/Users/Master/Projects/spark-3.0.0-preview2-bin-hadoop2.7/examples/src/main/python/sql/streaming/structured_kafka_wordcount.py", line 68, in <module>
    .option(subscribeType, topics)\
  File "/Users/Master/Projects/spark-3.0.0-preview2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/sql/streaming.py", line 406, in load
  File "/Users/Master/Projects/spark-3.0.0-preview2-bin-hadoop2.7/python/lib/py4j-0.10.8.1-src.zip/py4j/java_gateway.py", line 1286, in __call__
  File "/Users/Master/Projects/spark-3.0.0-preview2-bin-hadoop2.7/python/lib/pyspark.zip/pyspark/sql/utils.py", line 98, in deco
  File "/Users/Master/Projects/spark-3.0.0-preview2-bin-hadoop2.7/python/lib/py4j-0.10.8.1-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o31.load.
: java.lang.NoClassDefFoundError: org/apache/spark/sql/sources/v2/StreamWriteSupport
        at java.base/java.lang.ClassLoader.defineClass1(Native Method)
        at java.base/java.lang.ClassLoader.defineClass(ClassLoader.java:1016)
        at java.base/java.security.SecureClassLoader.defineClass(SecureClassLoader.java:151)
        at java.base/jdk.internal.loader.BuiltinClassLoader.defineClass(BuiltinClassLoader.java:821)
        at java.base/jdk.internal.loader.BuiltinClassLoader.findClassOnClassPathOrNull(BuiltinClassLoader.java:719)
        at java.base/jdk.internal.loader.BuiltinClassLoader.loadClassOrNull(BuiltinClassLoader.java:642)
        at java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(BuiltinClassLoader.java:600)
        at java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.loadClass(ClassLoaders.java:178)
        at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:575)
        at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:521)
        at java.base/java.lang.Class.forName0(Native Method)
        at java.base/java.lang.Class.forName(Class.java:416)
        at java.base/java.util.ServiceLoader$LazyClassPathLookupIterator.nextProviderClass(ServiceLoader.java:1210)
        at java.base/java.util.ServiceLoader$LazyClassPathLookupIterator.hasNextService(ServiceLoader.java:1221)
        at java.base/java.util.ServiceLoader$LazyClassPathLookupIterator.hasNext(ServiceLoader.java:1265)
        at java.base/java.util.ServiceLoader$2.hasNext(ServiceLoader.java:1300)
        at java.base/java.util.ServiceLoader$3.hasNext(ServiceLoader.java:1385)
        at scala.collection.convert.Wrappers$JIteratorWrapper.hasNext(Wrappers.scala:43)
        at scala.collection.Iterator.foreach(Iterator.scala:941)
        at scala.collection.Iterator.foreach$(Iterator.scala:941)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
        at scala.collection.IterableLike.foreach(IterableLike.scala:74)
        at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
        at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
        at scala.collection.TraversableLike.filterImpl(TraversableLike.scala:255)
        at scala.collection.TraversableLike.filterImpl$(TraversableLike.scala:249)
        at scala.collection.AbstractTraversable.filterImpl(Traversable.scala:108)
        at scala.collection.TraversableLike.filter(TraversableLike.scala:347)
        at scala.collection.TraversableLike.filter$(TraversableLike.scala:347)
        at scala.collection.AbstractTraversable.filter(Traversable.scala:108)
        at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:644)
        at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.scala:170)
        at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.base/java.lang.reflect.Method.invoke(Method.java:567)
        at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
        at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
        at py4j.Gateway.invoke(Gateway.java:282)
        at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
        at py4j.commands.CallCommand.execute(CallCommand.java:79)
        at py4j.GatewayConnection.run(GatewayConnection.java:238)
        at java.base/java.lang.Thread.run(Thread.java:830)
Caused by: java.lang.ClassNotFoundException: org.apache.spark.sql.sources.v2.StreamWriteSupport
        at java.base/jdk.internal.loader.BuiltinClassLoader.loadClass(BuiltinClassLoader.java:602)
        at java.base/jdk.internal.loader.ClassLoaders$AppClassLoader.loadClass(ClassLoaders.java:178)
        at java.base/java.lang.ClassLoader.loadClass(ClassLoader.java:521)
        ... 43 more

我使用的示例来自pyspark examples/src/main/python/sql/streaming/structured\u kafka\u wordcount.py。

结构化的\u kafka \u wordcount.py。


# 

# Licensed to the Apache Software Foundation (ASF) under one or more

# contributor license agreements.  See the NOTICE file distributed with

# this work for additional information regarding copyright ownership.

# The ASF licenses this file to You under the Apache License, Version 2.0

# (the "License"); you may not use this file except in compliance with

# the License.  You may obtain a copy of the License at

# 

# http://www.apache.org/licenses/LICENSE-2.0

# 

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

# 

"""
 Consumes messages from one or more topics in Kafka and does wordcount.
 Usage: structured_kafka_wordcount.py <bootstrap-servers> <subscribe-type> <topics>
   <bootstrap-servers> The Kafka "bootstrap.servers" configuration. A
   comma-separated list of host:port.
   <subscribe-type> There are three kinds of type, i.e. 'assign', 'subscribe',
   'subscribePattern'.
   |- <assign> Specific TopicPartitions to consume. Json string
   |  {"topicA":[0,1],"topicB":[2,4]}.
   |- <subscribe> The topic list to subscribe. A comma-separated list of
   |  topics.
   |- <subscribePattern> The pattern used to subscribe to topic(s).
   |  Java regex string.
   |- Only one of "assign, "subscribe" or "subscribePattern" options can be
   |  specified for Kafka source.
   <topics> Different value format depends on the value of 'subscribe-type'.

 Run the example
    `$ bin/spark-submit examples/src/main/python/sql/streaming/structured_kafka_wordcount.py \
    host1:port1,host2:port2 subscribe topic1,topic2`
"""
from __future__ import print_function

import sys

from pyspark.sql import SparkSession
from pyspark.sql.functions import explode
from pyspark.sql.functions import split

if __name__ == "__main__":
    if len(sys.argv) != 4:
        print("""
        Usage: structured_kafka_wordcount.py <bootstrap-servers> <subscribe-type> <topics>
        """, file=sys.stderr)
        sys.exit(-1)

    bootstrapServers = sys.argv[1]
    subscribeType = sys.argv[2]
    topics = sys.argv[3]

    spark = SparkSession\
        .builder\
        .appName("StructuredKafkaWordCount")\
        .getOrCreate()

    # Create DataSet representing the stream of input lines from kafka
    lines = spark\
        .readStream\
        .format("kafka")\
        .option("kafka.bootstrap.servers", bootstrapServers)\
        .option(subscribeType, topics)\    # HERE IT STOPS AND RETURNS ERROR
        .load()\
        .selectExpr("CAST(value AS STRING)")

    # Split the lines into words
    words = lines.select(
        # explode turns each item in an array into a separate row
        explode(
            split(lines.value, ' ')
        ).alias('word')
    )

    # Generate running word count
    wordCounts = words.groupBy('word').count()

    # Start running the query that prints the running counts to the console
    query = wordCounts\
        .writeStream\
        .outputMode('complete')\
        .format('console')\
        .start()

    query.awaitTermination()

kafka服务器正在运行,主题已创建。
java版本13.0.2
斯卡拉2.13.1
Kafka2.12-2.4.1
spark-3.0.0-preview2-bin-hadoop2.7
有什么问题?

xoshrz7s

xoshrz7s1#

org.apache.spark.sql.sources.v2.streamwritesupport类不再是spark sql版本3的一部分。
但一些pyspark库仍在尝试加载导致上述异常的类。
应该是一个spark:3.0.0 bug

kzmpq1sx

kzmpq1sx2#

我也有同样的问题,直到我意识到我添加了错误的依赖!
而不是:--packages org.apache。spark:spark-sql-kafka-0-10_2.12:2.4.5
使用:--packages org.apache。spark:spark-sql-kafka-0-10_2.12:3.0.0-预览2

相关问题