即使应用程序只配置了一次,也会丢失消息,并且具有最高的耐用性

mrzz3bfm  于 2021-06-05  发布在  Kafka
关注(0)|答案(1)|浏览(295)

有些情况下(非常罕见,但也有),当我收到重复,即使一切都配置为高耐用性,我们只使用一次配置。
请检查下面导致此问题的应用程序上下文和测试场景。

kafka群集设置

3个Kafka经纪人(1个在host1上,2个在host2上,3个在host3上)
3个zookeeper示例(1个在host1上,2个在host2上,3个在host3上)

Kafka构型

broker.id=1,2,3

    num.network.threads=2

    num.io.threads=8

    socket.send.buffer.bytes=102400

    socket.receive.buffer.bytes=102400

    socket.request.max.bytes=104857600

    log.dirs=/home/kafka/logs/kafka

    min.insync.replicas=3

    transaction.state.log.min.isr=3

    default.replication.factor=3

    log.retention.minutes=600

    log.segment.bytes=1073741824

    log.retention.check.interval.ms=300000

    zookeeper.connect=host1:2181,host2:2181,host3:2181

    zookeeper.connection.timeout.ms=6000

    group.initial.rebalance.delay.ms=1000

    log.message.timestamp.type=LogAppendTime

    delete.topic.enable=true

    auto.create.topics.enable=false

    unclean.leader.election.enable=false

zookeeper配置

tickTime=2000

    dataDir=/home/kafka/logs/zk

    clientPort=2181

    maxClientCnxns=0

    initLimit=5

    syncLimit=2

    server.1=host1:2888:3888

    server.2=host2:2888:3888

    server.3=host3:2888:3888

    autopurge.snapRetainCount=3

    autopurge.purgeInterval=24

Kafka内部主题描述

Topic:__transaction_state       PartitionCount:50       ReplicationFactor:3     Configs:segment.bytes=104857600,unclean.leader.election.enable=false,compression.type=uncompressed,cleanup.policy=compact,min.insync.replicas=3
      Topic: __transaction_state     Partition: 0   Leader: 1       Replicas: 3,2,1 Isr: 1,2,3
​
Topic:__consumer_offsets       PartitionCount:50       ReplicationFactor:3     Configs:segment.bytes=104857600,unclean.leader.election.enable=false,min.insync.replicas=3,cleanup.policy=compact,compression.type=producer
      Topic: __consumer_offsets       Partition: 0   Leader: 1       Replicas: 3,2,1 Isr: 1,2,3

应用程序主题

Topic input-event
    Topic:input-event     PartitionCount:3       ReplicationFactor:3   Configs:retention.ms=28800001,unclean.leader.election.enable=false,min.insync.replicas=3,message.timestamp.difference.max.ms=28800000
          Topic: input-event     Partition: 0   Leader: 1       Replicas: 1,2,3 Isr: 1,2,3
          Topic: input-event     Partition: 1   Leader: 2       Replicas: 2,3,1 Isr: 1,2,3
          Topic: input-event     Partition: 2   Leader: 3       Replicas: 3,1,2 Isr: 1,2,3

    Topic output-event
    Topic:output-event       PartitionCount:3       ReplicationFactor:3   Configs:retention.ms=28800001,unclean.leader.election.enable=false,min.insync.replicas=3,message.timestamp.difference.max.ms=28800000
          Topic: output-event       Partition: 0   Leader: 2       Replicas: 2,3,1 Isr: 1,2,3
          Topic: output-event       Partition: 1   Leader: 3       Replicas: 3,1,2 Isr: 1,2,3
          Topic: output-event       Partition: 2   Leader: 1       Replicas: 1,2,3 Isr: 1,2,3

应用程序使用者属性

o.a.k.clients.consumer.ConsumerConfig : ConsumerConfig values:
                  auto.commit.interval.ms = 5000
                  auto.offset.reset = earliest
                  bootstrap.servers = [host1:9092, host2:9092, host3:9092]
                  check.crcs = true
                  client.id =
                  connections.max.idle.ms = 540000
                  default.api.timeout.ms = 60000
                  enable.auto.commit = false
                  exclude.internal.topics = true
                  fetch.max.bytes = 134217728
                  fetch.max.wait.ms = 500
                  fetch.min.bytes = 1
                  group.id = groupId
                  heartbeat.interval.ms = 3000
                  interceptor.classes = []
                  internal.leave.group.on.close = true
                  isolation.level = read_committed
                  key.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer
                  max.partition.fetch.bytes = 134217728
                  max.poll.interval.ms = 300000
                  max.poll.records = 1
                  metadata.max.age.ms = 300000
                  metric.reporters = []
                  metrics.num.samples = 2
                  metrics.recording.level = INFO
                  metrics.sample.window.ms = 30000
                  partition.assignment.strategy = [class org.apache.kafka.clients.consumer.RangeAssignor]
                  receive.buffer.bytes = 65536
                  reconnect.backoff.max.ms = 1000
                  reconnect.backoff.ms = 1000
                  request.timeout.ms = 30000
                  retry.backoff.ms = 1000
                  sasl.client.callback.handler.class = null
                  sasl.jaas.config = null
                  sasl.kerberos.kinit.cmd = /usr/bin/kinit
                  sasl.kerberos.min.time.before.relogin = 60000
                  sasl.kerberos.service.name = null
                  sasl.kerberos.ticket.renew.jitter = 0.05
                  sasl.kerberos.ticket.renew.window.factor = 0.8
                  sasl.login.callback.handler.class = null
                  sasl.login.class = null
                  sasl.login.refresh.buffer.seconds = 300
                  sasl.login.refresh.min.period.seconds = 60
                  sasl.login.refresh.window.factor = 0.8
                  sasl.login.refresh.window.jitter = 0.05
                  sasl.mechanism = GSSAPI
                  security.protocol = PLAINTEXT
                  send.buffer.bytes = 131072
                  session.timeout.ms = 10000
                  ssl.cipher.suites = null
                  ssl.enabled.protocols = [TLSv1.2, TLSv1.1, TLSv1]
                  ssl.endpoint.identification.algorithm = https
                  ssl.key.password = null
                  ssl.keymanager.algorithm = SunX509
                  ssl.keystore.location = null
                  ssl.keystore.password = null
                  ssl.keystore.type = JKS
                  ssl.protocol = TLS
                  ssl.provider = null
                  ssl.secure.random.implementation = null
                  ssl.trustmanager.algorithm = PKIX
                  ssl.truststore.location = null
                  ssl.truststore.password = null
                  ssl.truststore.type = JKS
                  value.deserializer = class org.apache.kafka.common.serialization.ByteArrayDeserializer

应用程序生产者属性

bootstrapServers = "host1, host2, host3"
    transactionIdPrefix = "my-producer-"${instance}"
    "enable.idempotence" = "true"
    "acks" = "all"
    "retries" = "2147483647"
    "transaction.timeout.ms" = "10000"
    "max.in.flight.requests.per.connection" = "1"
    "reconnect.backoff.max.ms" = "1000"
    "reconnect.backoff.ms" = "1000"
    "retry.backoff.ms" = "1000"

应用程序处理提交

使用kafkatransactionmanager,我们启动事务,使用kafkatemplate将消息写入输出主题,并发送使用者偏移量(springkafka2.2.8.release)。

预期测试/实际测试

写32000条信息输入主题
启动3个应用程序示例
开始逐个处理消息(max.poll.records=1)
在处理过程中,将sigkill(kill-9)并行发送给host1和host2Kafka代理50次。
等待60秒
在处理过程中,将sigkill(kill-9)并行发送给host1和host3Kafka代理50次。
等待60秒
在处理过程中,将sigkill(kill-9)并行发送给host2和host3Kafka代理50次。
预期输出主题将有32000条消息,然而,有时我们实际上会得到一个重复的消息(至少一个)。
有时我们会收到32000条信息,一切都正常。

gv8xihay

gv8xihay1#

这个问题与以下事实有关:在topic.partition级别没有正确设置事务id,并且我们有两个生产者为同一个分区编写了两次相同的消息。
这本书读得很好:https://tgrez.github.io/posts/2019-04-13-kafka-transactions.html

相关问题