我正在用Kafka建立一个数据管道。数据流如下:捕获mongodb中的数据更改并将其发送到elasticsearch。
数据库
版本3.6
碎片簇
Kafka
Confunt平台4.1.0
mongodb源连接器:debezium 0.7.5
弹性Flume连接器
ElasticSearch
版本6.1.0
因为我还在测试,Kafka相关的系统都在单服务器上运行。
启动zookeepr
$ bin/zookeeper-server-start etc/kafka/zookeeper.properties
启动引导服务器
$ bin/kafka-server-start etc/kafka/server.properties
启动注册表架构
$ bin/schema-registry-start etc/schema-registry/schema-registry.properties
启动mongodb源连接器
$ bin/connect-standalone \
etc/schema-registry/connect-avro-standalone.properties \
etc/kafka/connect-mongo-source.properties
$ cat etc/kafka/connect-mongo-source.properties
>>>
name=mongodb-source-connector
connector.class=io.debezium.connector.mongodb.MongoDbConnector
mongodb.hosts=''
initial.sync.max.threads=1
tasks.max=1
mongodb.name=higee
$ cat etc/schema-registry/connect-avro-standalone.properties
>>>
bootstrap.servers=localhost:9092
key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081
internal.key.converter=org.apache.kafka.connect.json.JsonConverter
internal.value.converter=org.apache.kafka.connect.json.JsonConverter
internal.key.converter.schemas.enable=false
internal.value.converter.schemas.enable=false
rest.port=8083
启动elasticsearchFlume连接器
$ bin/connect-standalone \
etc/schema-registry/connect-avro-standalone2.properties \
etc/kafka-connect-elasticsearch/elasticsearch.properties
$ cat etc/kafka-connect-elasticsearch/elasticsearch.properties
>>>
name=elasticsearch-sink
connector.class=io.confluent.connect.elasticsearch.ElasticsearchSinkConnector
tasks.max=1
topics=higee.higee.higee
key.ignore=true
connection.url=''
type.name=kafka-connect
$ cat etc/schema-registry/connect-avro-standalone2.properties
>>>
bootstrap.servers=localhost:9092
key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081
internal.key.converter=org.apache.kafka.connect.json.JsonConverter
internal.value.converter=org.apache.kafka.connect.json.\
JsonConverter
internal.key.converter.schemas.enable=false
internal.value.converter.schemas.enable=false
rest.port=8084
以上系统一切正常。kafka连接器捕获数据更改(cdc),并通过接收器连接器将其成功发送到elasticsearch。问题是我无法将字符串类型的消息数据转换为结构化数据类型。例如,让我们在对mongodb进行一些更改之后使用主题数据。
$ bin/kafka-avro-console-consumer \
--bootstrap-server localhost:9092 \
--topic higee.higee.higee --from-beginning | jq
然后,得到如下结果。
"after": null,
"patch": {
"string": "{\"_id\" : {\"$oid\" : \"5ad97f982a0f383bb638ecac\"},\"name\" : \"higee\",\"salary\" : 100,\"origin\" : \"South Korea\"}"
},
"source": {
"version": {
"string": "0.7.5"
},
"name": "higee",
"rs": "172.31.50.13",
"ns": "higee",
"sec": 1524214412,
"ord": 1,
"h": {
"long": -2379508538412995600
},
"initsync": {
"boolean": false
}
},
"op": {
"string": "u"
},
"ts_ms": {
"long": 1524214412159
}
}
然后,如果我去elasticsearch,我会得到以下结果。
{
"_index": "higee.higee.higee",
"_type": "kafka-connect",
"_id": "higee.higee.higee+0+3",
"_score": 1,
"_source": {
"after": null,
"patch": """{"_id" : {"$oid" : "5ad97f982a0f383bb638ecac"},
"name" : "higee",
"salary" : 100,
"origin" : "South Korea"}""",
"source": {
"version": "0.7.5",
"name": "higee",
"rs": "172.31.50.13",
"ns": "higee",
"sec": 1524214412,
"ord": 1,
"h": -2379508538412995600,
"initsync": false
},
"op": "u",
"ts_ms": 1524214412159
}
}
我想达到的目标是
{
"_index": "higee.higee.higee",
"_type": "kafka-connect",
"_id": "higee.higee.higee+0+3",
"_score": 1,
"_source": {
"oid" : "5ad97f982a0f383bb638ecac",
"name" : "higee",
"salary" : 100,
"origin" : "South Korea"
}"
}
我一直在尝试并仍在考虑的一些选择如下。
贮木场
案例1:不知道如何解析这些字符(/u0002,/u0001)
日志存储.conf
input {
kafka {
bootstrap_servers => ["localhost:9092"]
topics => ["higee.higee.higee"]
auto_offset_reset => "earliest"
codec => json {
charset => "UTF-8"
}
}
}
filter {
json {
source => "message"
}
}
output {
stdout {
codec => rubydebug
}
}
结果
{
"message" => "H\u0002�\u0001{\"_id\" : \
{\"$oid\" : \"5adafc0e2a0f383bb63910a6\"}, \
\"name\" : \"higee\", \
\"salary\" : 101, \
\"origin\" : \"South Korea\"} \
\u0002\n0.7.5\nhigee \
\u0018172.31.50.13\u001Ahigee.higee2 \
��ح\v\u0002\u0002��̗���� \u0002\u0002u\u0002�����X",
"tags" => [[0] "_jsonparsefailure"]
}
案例2
日志存储.conf
input {
kafka {
bootstrap_servers => ["localhost:9092"]
topics => ["higee.higee.higee"]
auto_offset_reset => "earliest"
codec => avro {
schema_uri => "./test.avsc"
}
}
}
filter {
json {
source => "message"
}
}
output {
stdout {
codec => rubydebug
}
}
测试.avsc
{
"namespace": "example",
"type": "record",
"name": "Higee",
"fields": [
{"name": "_id", "type": "string"},
{"name": "name", "type": "string"},
{"name": "salary", "type": "int"},
{"name": "origin", "type": "string"}
]
}
结果
An unexpected error occurred! {:error=>#<NoMethodError:
undefined method `type_sym' for nil:NilClass>, :backtrace=>
["/home/ec2-user/logstash-
6.1.0/vendor/bundle/jruby/2.3.0/gems/avro-
1.8.2/lib/avro/io.rb:224:in `match_schemas'", "/home/ec2-
user/logstash-6.1.0/vendor/bundle/jruby/2.3.0/gems/avro-
1.8.2/lib/avro/io.rb:280:in `read_data'", "/home/ec2-
user/logstash-6.1.0/vendor/bundle/jruby/2.3.0/gems/avro-
1.8.2/lib/avro/io.rb:376:in `read_union'", "/home/ec2-
user/logstash-6.1.0/vendor/bundle/jruby/2.3.0/gems/avro-
1.8.2/lib/avro/io.rb:309:in `read_data'", "/home/ec2-
user/logstash-6.1.0/vendor/bundle/jruby/2.3.0/gems/avro-
1.8.2/lib/avro/io.rb:384:in `block in read_record'",
"org/jruby/RubyArray.java:1734:in `each'", "/home/ec2-
user/logstash-6.1.0/vendor/bundle/jruby/2.3.0/gems/avro-
1.8.2/lib/avro/io.rb:382:in `read_record'", "/home/ec2-
user/logstash-6.1.0/vendor/bundle/jruby/2.3.0/gems/avro-
1.8.2/lib/avro/io.rb:310:in `read_data'", "/home/ec2-
user/logstash-6.1.0/vendor/bundle/jruby/2.3.0/gems/avro-
1.8.2/lib/avro/io.rb:275:in `read'", "/home/ec2-
user/logstash-6.1.0/vendor/bundle/jruby/2.3.0/gems/
logstash-codec-avro-3.2.3-java/lib/logstash/codecs/
avro.rb:77:in `decode'", "/home/ec2-user/logstash-6.1.0/
vendor/bundle/jruby/2.3.0/gems/logstash-input-kafka-
8.0.2/lib/ logstash/inputs/kafka.rb:254:in `block in
thread_runner'", "/home/ec2-user/logstash-
6.1.0/vendor/bundle/jruby/2.3.0/gems/logstash-input-kafka-
8.0.2/lib/logstash/inputs/kafka.rb:253:in `block in
thread_runner'"]}
python客户端
在一些数据操作之后使用不同的主题名来使用主题并生成,这样elasticsearch接收器连接器就可以使用来自python操作主题的格式良好的消息 kafka
库:无法解码消息
from kafka import KafkaConsumer
consumer = KafkaConsumer(
topics='higee.higee.higee',
auto_offset_reset='earliest'
)
for message in consumer:
message.value.decode('utf-8')
>>> 'utf-8' codec can't decode byte 0xe4 in position 6:
invalid continuation byte
``` `confluent_kafka` 与Python3不兼容
你知道我如何在elasticsearch中对数据进行jsonify吗?以下是我搜索的来源。
蒙哥布
mongodb事件展平
avro转换器
序列化debizium事件
debizum教程
提前谢谢。
一些尝试
1) 为了测试转换,我将connect-mongo-source.properties文件更改如下。
$ cat etc/kafka/connect-mongo-source.properties
>>>
name=mongodb-source-connector
connector.class=io.debezium.connector.mongodb.MongoDbConnector
mongodb.hosts=''
initial.sync.max.threads=1
tasks.max=1
mongodb.name=higee
transforms=unwrap
transforms.unwrap.type = io.debezium.connector.mongodbtransforms.UnwrapFromMongoDbEnvelope
下面是我得到的错误日志。我还不能适应Kafka和更重要的debezium平台,我无法调试这个错误。
ERROR WorkerSourceTask{id=mongodb-source-connector-0} Task threw an uncaught and unrecoverable exception (org.apache.kafka.connect.runtime.WorkerTask:172)
org.bson.json.JsonParseException: JSON reader expected a string but found '0'.
at org.bson.json.JsonReader.visitBinDataExtendedJson(JsonReader.java:904)
at org.bson.json.JsonReader.visitExtendedJSON(JsonReader.java:570)
at org.bson.json.JsonReader.readBsonType(JsonReader.java:145)
at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:82)
at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:41)
at org.bson.codecs.BsonDocumentCodec.readValue(BsonDocumentCodec.java:101)
at org.bson.codecs.BsonDocumentCodec.decode(BsonDocumentCodec.java:84)
at org.bson.BsonDocument.parse(BsonDocument.java:62)
at io.debezium.connector.mongodb.transforms.UnwrapFromMongoDbEnvelope.apply(UnwrapFromMongoDbEnvelope.java:45)
at org.apache.kafka.connect.runtime.TransformationChain.apply(TransformationChain.java:38)
at org.apache.kafka.connect.runtime.WorkerSourceTask.sendRecords(WorkerSourceTask.java:218)
at org.apache.kafka.connect.runtime.WorkerSourceTask.execute(WorkerSourceTask.java:194)
at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:170)
at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:214)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
2) 这次,我更改了elasticsearch.properties,没有更改connect-mongo-source.properties。
$ cat connect-mongo-source.properties
name=mongodb-source-connector
connector.class=io.debezium.connector.mongodb.MongoDbConnector
mongodb.hosts=''
initial.sync.max.threads=1
tasks.max=1
mongodb.name=higee
$ cat elasticsearch.properties
name=elasticsearch-sink
connector.class = io.confluent.connect.elasticsearch.ElasticsearchSinkConnector
tasks.max=1
topics=higee.higee.higee
key.ignore=true
connection.url=''
type.name=kafka-connect
transforms=unwrap
transforms.unwrap.type = io.debezium.connector.mongodb.transforms.UnwrapFromMongoDbEnvelope
我犯了以下错误。
ERROR WorkerSinkTask{id=elasticsearch-sink-0} Task threw an uncaught and unrecoverable exception (org.apache.kafka.connect.runtime.WorkerTask:172)
org.bson.BsonInvalidOperationException: Document does not contain key $set
at org.bson.BsonDocument.throwIfKeyAbsent(BsonDocument.java:844)
at org.bson.BsonDocument.getDocument(BsonDocument.java:135)
at io.debezium.connector.mongodb.transforms.UnwrapFromMongoDbEnvelope.apply(UnwrapFromMongoDbEnvelope.java:53)
at org.apache.kafka.connect.runtime.TransformationChain.apply(TransformationChain.java:38)
at org.apache.kafka.connect.runtime.WorkerSinkTask.convertMessages(WorkerSinkTask.java:480)
at org.apache.kafka.connect.runtime.WorkerSinkTask.poll(WorkerSinkTask.java:301)
at org.apache.kafka.connect.runtime.WorkerSinkTask.iteration(WorkerSinkTask.java:205)
at org.apache.kafka.connect.runtime.WorkerSinkTask.execute(WorkerSinkTask.java:173)
at org.apache.kafka.connect.runtime.WorkerTask.doRun(WorkerTask.java:170)
at org.apache.kafka.connect.runtime.WorkerTask.run(WorkerTask.java:214)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
3) 更改了test.avsc并运行了logstash。我没有收到任何错误信息,但结果不是我所期望的 `origin` , `salary` , `name` 字段都是空的,即使它们被赋予了非空值。我甚至可以通过控制台正确读取数据。
$ cat test.avsc
{
"type" : "record",
"name" : "MongoEvent",
"namespace" : "higee.higee",
"fields" : [ {
"name" : "_id",
"type" : {
"type" : "record",
"name" : "HigeeEvent",
"fields" : [ {
"name" : "$oid",
"type" : "string"
}, {
"name" : "salary",
"type" : "long"
}, {
"name" : "origin",
"type" : "string"
}, {
"name" : "name",
"type" : "string"
} ]
}
} ]
}
$ cat logstash3.conf
input {
kafka {
bootstrap_servers => ["localhost:9092"]
topics => ["higee.higee.higee"]
auto_offset_reset => "earliest"
codec => avro {
schema_uri => "./test.avsc"
}
}
}
output {
stdout {
codec => rubydebug
}
}
$ bin/logstash -f logstash3.conf
{
"@version" => "1",
"_id" => {
"salary" => 0,
"origin" => "",
"$oid" => "",
"name" => ""
},
"@timestamp" => 2018-04-25T09:39:07.962Z
}
3条答案
按热度按时间ioekq8ef1#
我使用python-kafka客户端解决了这个问题。下面是我的管道的新架构。
我使用了Python2,尽管confluent文档说支持python3。主要原因是有一些python2语法代码。例如…(不是完全按照第行,而是类似的语法)
为了使用python3,我需要将上面的行转换为:
也就是说,下面是我的python代码。请注意,此代码仅用于原型设计,尚未用于生产。
通过合流消费者消费消息
代码
(在mongodb中更新文档之后)让我们检查一下
message
变量操纵已使用的消息
代码
检查
patch_dict
```{'name': 'higee', 'origin': 'S Korea', 'salary': 100}
from confluent_kafka import avro
from confluent_kafka.avro import AvroProducer
name=elasticsearch-sink
connector.class= io.confluent.connect \
elasticsearch.ElasticsearchSinkConnector
tasks.max=1
topics=python
key.ignore=true
connection.url=''
type.name=kafka-connect
{
"_index": "zzzz",
"_type": "kafka-connect",
"_id": "zzzz+0+3",
"_score": 1,
"_source": {
"name": "higee",
"origin": "S Korea",
"salary": 100
}
}
a2mppw5e2#
+1到@cricket\u 007的建议-使用
io.debezium.connector.mongodb.transforms.UnwrapFromMongoDbEnvelope
单个消息转换。你可以阅读更多关于SMT和他们的好处在这里。klsxnrf13#
python客户端
您必须使用avro消费者,否则您将
'utf-8' codec can't decode byte
即使是这个例子也行不通,因为您仍然需要schema注册表来查找schema。confluent的python客户机的前提条件是它可以与Python3.x一起工作
没有什么能阻止您使用不同的客户机,所以不知道为什么您只使用python。
logstash avro编解码器
json编解码器无法解码avro数据。我认为avro输入编解码器后面的json过滤器也不会起作用
你的avro模式是错误的-你错过了
$oid
代替_id
“raw avro”(包含消息本身中的模式)和confluent的编码版本(只包含注册表中的模式id)之间有区别。意思是,logstash不与模式注册表集成。。。至少没有插件也不行。你的avsc应该是这样的
然而,avro不允许名字以regex开头
[A-Za-z_]
,所以$oid
会是个问题。虽然我不推荐(实际上也没有尝试过),但是从avro控制台消费者那里获取json编码的avro数据到logstash的一种可能方法是使用pipeinput插件
去肠
请注意
after
值总是一个字符串,按照惯例,它将包含文档的json表示http://debezium.io/docs/connectors/mongodb/
我认为这也适用于
patch
价值观,但我真的不懂debezium。如果不使用简单消息转换(smt),kafka将无法在飞行中解析json。在阅读链接到的文档时,您可能应该将这些添加到连接源属性中
同样值得指出的是,场平坦化是在路线图-dbz-561
Kafka连接ElasticSearch
elasticsearch在不使用logstash或其json处理器的情况下不会解析和处理编码的json字符串对象。相反,它只将它们作为整个字符串体进行索引。
如果我没记错的话,connect将只对顶级avro字段应用elasticsearchMap,而不是嵌套字段。
换句话说,生成的Map遵循这个模式,
您实际上需要这样做的地方—可能需要手动定义es索引
不过,我也不确定美元符号是否被允许。
Kafka连接mongodb源码
如果以上都不起作用,可以尝试使用其他连接器
方案1
方案2