我创建了sparkconsumer,这样我就可以通过spark结构化流媒体向kafka发送csv文件。我启动sparkconsumer,然后他等待制作人。我启动生产者和文件发送。问题是我变成了一个“null”——Dataframe中的值,而不是内容。我的输出如下所示:
-------------------------------------------
Batch: 1
-------------------------------------------
+---------+---------+-----------+--------+-----------------------+
|InvoiceNo|StockCode|Description|Quantity|timestamp |
+---------+---------+-----------+--------+-----------------------+
|null |null |null |null |2019-01-08 15:46:29.156|
|null |null |null |null |2019-01-08 15:46:29.224|
|null |null |null |null |2019-01-08 15:46:29.224|
|null |null |null |null |2019-01-08 15:46:29.225|
|null |null |null |null |2019-01-08 15:46:29.225|
|null |null |null |null |2019-01-08 15:46:29.225|
|null |null |null |null |2019-01-08 15:46:29.225|
|null |null |null |null |2019-01-08 15:46:29.225|
|null |null |null |null |2019-01-08 15:46:29.225|
|null |null |null |null |2019-01-08 15:46:29.225|
|null |null |null |null |2019-01-08 15:46:29.225|
|null |null |null |null |2019-01-08 15:46:29.241|
|null |null |null |null |2019-01-08 15:46:29.241|
|null |null |null |null |2019-01-08 15:46:29.241|
|null |null |null |null |2019-01-08 15:46:29.241|
|null |null |null |null |2019-01-08 15:46:29.241|
|null |null |null |null |2019-01-08 15:46:29.241|
|null |null |null |null |2019-01-08 15:46:29.241|
|null |null |null |null |2019-01-08 15:46:29.241|
|null |null |null |null |2019-01-08 15:46:29.241|
+---------+---------+-----------+--------+-----------------------+
sparkconsumer的代码是:
object sparkConsumer extends App {
val rootLogger = Logger.getRootLogger()
rootLogger.setLevel(Level.ERROR)
val spark = SparkSession
.builder()
.appName("Spark-Kafka-Integration")
.master("local")
.getOrCreate()
val schema = StructType(Array(
StructField("InvoiceNo", StringType, nullable = true),
StructField("StockCode", StringType, nullable = true),
StructField("Description", StringType, nullable = true),
StructField("Quantity", StringType, nullable = true)
))
import spark.implicits._
val df = spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "test")
.option("delimiter", ";")
.option("header","true")
.option("inferSchema","true")
.load()
val df1 = df.selectExpr("CAST(value as STRING)", "CAST(timestamp AS TIMESTAMP)").as[(String, Timestamp)]
.select(from_json($"value", schema).as("data"), $"timestamp")
.select("data.*", "timestamp")
df1.writeStream
.format("console")
.option("truncate","false")
.start()
.awaitTermination()
}
制作人.scala:
object Producer extends App {
import java.util.Properties
import org.apache.kafka.clients.producer._
val props = new Properties()
props.put("bootstrap.servers", "localhost:9092")
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](props)
val TOPIC="test"
val fileName = "path/to/test.csv"
val lines = Source.fromFile(fileName).getLines()
for(i <- lines){
val record = new ProducerRecord(TOPIC, "key", s"$i")
producer.send(record)
}
val record = new ProducerRecord(TOPIC, "key", "the end "+new java.util.Date)
producer.send(record)
producer.close()
}
有人能帮我成为文件的内容吗?
1条答案
按热度按时间jyztefdp1#
我认为这个问题与序列化和反序列化有关。你的
value
,以csv格式写入主题,例如:111,someCode,someDescription,11
您的spark消费者认为消息是json格式的(from_json
使用一些模式)。如果消息如下所示,解析就可以了。必须更改序列化或反序列化以相互匹配。
以下选项之一应起作用
生产者必须以json格式将消息写入主题
spark使用者应该使用
comma
拆分字段