spark流作业在为kafka主题分配新分区(旧分区被吊销)后失败:没有分区主题1的当前分配

u0sqgete  于 2021-06-07  发布在  Kafka
关注(0)|答案(1)|浏览(404)

使用Spark流与Kafka和创建一个直接流使用下面的代码-

val kafkaParams = Map[String, Object](
  "bootstrap.servers" -> conf.getString("kafka.brokers"),
  "zookeeper.connect" -> conf.getString("kafka.zookeeper"),
  "group.id" -> conf.getString("kafka.consumergroups"),
  "auto.offset.reset" -> args { 1 },
  "enable.auto.commit" -> (conf.getString("kafka.autoCommit").toBoolean: java.lang.Boolean),
  "key.deserializer" -> classOf[StringDeserializer],
  "value.deserializer" -> classOf[StringDeserializer],
  "security.protocol" -> "SASL_PLAINTEXT",
  "session.timeout.ms" -> args { 2 },
  "max.poll.records" -> args { 3 },
  "request.timeout.ms" -> args { 4 },
  "fetch.max.wait.ms" -> args { 5 })

val messages = KafkaUtils.createDirectStream[String, String](
  ssc,
  LocationStrategies.PreferConsistent,
  ConsumerStrategies.Subscribe[String, String](topicsSet, kafkaParams))

经过一些处理后,我们使用commitasyncapi提交偏移量。

try
{
messages.foreachRDD { rdd =>
  val offsetRanges = rdd.asInstanceOf[HasOffsetRanges].offsetRanges
  messages.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)
}
}
catch
{   
 case e:Throwable => e.printStackTrace()
}

以下错误导致作业崩溃-

18/03/20 10:43:30 INFO ConsumerCoordinator: Revoking previously assigned partitions [TOPIC_NAME-3, TOPIC_NAME-5, TOPIC_NAME-4] for group 21_feb_reload_2
            18/03/20 10:43:30 INFO AbstractCoordinator: (Re-)joining group 21_feb_reload_2
            18/03/20 10:43:30 INFO AbstractCoordinator: (Re-)joining group 21_feb_reload_2
            18/03/20 10:44:00 INFO AbstractCoordinator: Successfully joined group 21_feb_reload_2 with generation 20714
            18/03/20 10:44:00 INFO ConsumerCoordinator: Setting newly assigned partitions [TOPIC_NAME-1, TOPIC_NAME-0, TOPIC_NAME-2] for group 21_feb_reload_2
            18/03/20 10:44:00 ERROR JobScheduler: Error generating jobs for time 1521557010000 ms
            java.lang.IllegalStateException: No current assignment for partition TOPIC_NAME-4
                at org.apache.kafka.clients.consumer.internals.SubscriptionState.assignedState(SubscriptionState.java:251)
                at org.apache.kafka.clients.consumer.internals.SubscriptionState.needOffsetReset(SubscriptionState.java:315)
                at org.apache.kafka.clients.consumer.KafkaConsumer.seekToEnd(KafkaConsumer.java:1170)
                at org.apache.spark.streaming.kafka010.DirectKafkaInputDStream.latestOffsets(DirectKafkaInputDStream.scala:197)
                at org.apache.spark.streaming.kafka010.DirectKafkaInputDStream.compute(DirectKafkaInputDStream.scala:214)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
                at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340)
                at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:335)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:333)
                at scala.Option.orElse(Option.scala:289)
                at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:330)
                at org.apache.spark.streaming.dstream.MappedDStream.compute(MappedDStream.scala:36)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1$$anonfun$apply$7.apply(DStream.scala:341)
                at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1$$anonfun$1.apply(DStream.scala:340)
                at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:335)
                at org.apache.spark.streaming.dstream.DStream$$anonfun$getOrCompute$1.apply(DStream.scala:333)
                at scala.Option.orElse(Option.scala:289)
                at org.apache.spark.streaming.dstream.DStream.getOrCompute(DStream.scala:330)
                at org.apache.spark.streaming.dstream.ForEachDStream.generateJob(ForEachDStream.scala:48)
                at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:117)
                at org.apache.spark.streaming.DStreamGraph$$anonfun$1.apply(DStreamGraph.scala:116)
                at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
                at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241)
                at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
                at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
                at scala.collection.TraversableLike$class.flatMap(TraversableLike.scala:241)
                at scala.collection.AbstractTraversable.flatMap(Traversable.scala:104)
                at org.apache.spark.streaming.DStreamGraph.generateJobs(DStreamGraph.scala:116)
                at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:249)
                at org.apache.spark.streaming.scheduler.JobGenerator$$anonfun$3.apply(JobGenerator.scala:247)
                at scala.util.Try$.apply(Try.scala:192)
                at org.apache.spark.streaming.scheduler.JobGenerator.generateJobs(JobGenerator.scala:247)
                at org.apache.spark.streaming.scheduler.JobGenerator.org$apache$spark$streaming$scheduler$JobGenerator$$processEvent(JobGenerator.scala:183)
                at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:89)
                at org.apache.spark.streaming.scheduler.JobGenerator$$anon$1.onReceive(JobGenerator.scala:88)
                at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
            18/03/20 10:44:00 ERROR ApplicationMaster: User class threw exception: java.lang.IllegalStateException: No current assignment for partition

我的发现-
1-类似的问题从后KafkaSpark流抛出exception:no current 分区分配这并没有解释为什么使用assign而不是subscribe。
2-为了确保没有重新平衡,我将session.timeout.ms增加到几乎我的批处理持续时间,因为我的处理在不到2分钟的时间内完成(批处理持续时间)。
session.timeout.ms—消费者在被认为还活着的情况下与代理失去联系的时间量(https://www.safaribooksonline.com/library/view/kafka-the-definitive/9781491936153/ch04.html)
3-遇到使用方法重新平衡侦听器-a onpartitions取消b onpartitions取消分配
但我无法理解如何使用第一个在重新平衡之前提交的补偿。
任何意见都将不胜感激。

0x6upsns

0x6upsns1#

我也面临同样的问题。当我的两个spark作业使用相同的kafka client.id时。因此我已为另一个作业分配了新的kafka客户端

相关问题