我一直在尝试将大量的json消息(每个约2kb)推送到cassandra,这些消息来自kafka,用于spark streaming。
模拟器---->Kafka---->sparkstreaming---->Cassandra。
每一个都运行在单独的ec2示例上,具有30gb的ram和8核处理器作为独立的单节点设置。
当我试图从模拟器中推送大约500万条消息时,在大约10万条消息之后,cassandra停止插入消息,spark streaming job继续创建批处理(如spark streaming web ui所示)。我甚至检查了日志,但没有发现任何问题。
另外,我也不确定在编写cassandra的代码中使用spark连接器的方式。
请看下面的代码,
/**
* Spark Streaming to cassandra code
*/
package org.sparkexample;
import java.util.HashMap;
import java.util.Map;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import com.datastax.spark.connector.japi.CassandraJavaUtil;
import com.datastax.spark.connector.japi.CassandraStreamingJavaUtil;
import scala.Tuple2;
public class SparkStreamingKafkaTest {
private SparkStreamingKafkaTest() {
}
public static void main(String[] args) {
if (args.length < 6) {
System.err.println("Usage: SparkStreamingKafka <zkQuorum> <group> <topics> <numThreads> <conc write> <cassandra ip>");
System.exit(1);
}
SparkConf sparkConf = new SparkConf().setAppName("SparkStreamingKafka");
//specific to cassandra
sparkConf.set("spark.cassandra.output.concurrent.writes", args[4]);
sparkConf.set("spark.cassandra.connection.host",args[5]);
// Create the context with a 2 second batch size
JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000));
int numThreads = Integer.parseInt(args[3]);
Map<String, Integer> topicMap = new HashMap<String, Integer>();
String[] topics = args[2].split(",");
for (String topic : topics) {
topicMap.put(topic, numThreads);
}
JavaPairReceiverInputDStream<String, String> messages = KafkaUtils.createStream(jssc, args[0], args[1],
topicMap);
JavaDStream<WordCount> wc = messages.map(new Function<Tuple2<String, String>, WordCount>() {
@Override
public WordCount call(Tuple2<String, String> tuple2) {
String key = System.currentTimeMillis()+ "_"+ Math.random();
return new WordCount(key, tuple2._2());
}
});
Map <String, String> map = new HashMap<String, String>();
map.put("word", "word");
map.put("count", "count");
CassandraStreamingJavaUtil.javaFunctions(wc).writerBuilder("mykeyspace", "wordcount",CassandraJavaUtil.mapToRow(WordCount.class, map)).saveToCassandra();
jssc.start();
jssc.awaitTermination();
}
}
字数.java
package org.sparkexample;
import java.io.Serializable;
public class WordCount implements Serializable{
private String word;
private String count;
public WordCount(){
}
public String getWord() {
return word;
}
public void setWord(String word) {
this.word = word;
}
public String getCount() {
return count;
}
public void setCount(String count) {
this.count = count;
}
public WordCount(String key, String count) {
this.word = key;
this.count = count;
}
}
我一直在使用默认的cassandra.yml,它有以下主要依赖项,
spark-cassandra-连接器2.10-1.4.0-m3
spark-cassandra-connector-java\ U 2.10-1.4.0-m3
cassandra驱动核心-2.1.7.1
spark-streaming-Kafka2.10-1.4.1
Spark流2.10-1.4.1
Spark芯2.10-1.4.1
请提出可能的问题。
nodetool info和nodetool tpstats的输出如下所示。
暂无答案!
目前还没有任何答案,快来回答吧!