我有一个json格式的数据流,它由websocket提供,大小在每秒1mb到60MB之间变化。
我先对数据进行解码,然后对其进行解析,最后写入mysql。
我有两个想法:
1) 从socket中读取数据,然后在producer中解码并通过avro发送给consumer,然后在spark map上获取数据并写入mysql,从而减少consumer的开销
2) 从socket读取数据,然后将数据发送到producer中的consumer,然后在consumer中获取数据,然后在spark上解码,并将解析后的数据发送到spark job中写入mysql。
你知道吗?
制作人
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package com.tan;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.ProducerConfig;
import java.util.Properties;
import java.util.stream.Stream;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
/**
*
* @author Tan
*/
public class MainKafkaProducer {
/**
* @param args the command line arguments
*/
public static void main(String[] args) throws InterruptedException {
// TODO code application logic here
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.ByteArraySerializer");
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
//props.put("group.id", "mygroup");
//props.put("max.partition.fetch.bytes", "100000000");
//props.put("serializer.class", "kafka.serializer.StringEncoder");
//props.put("partitioner.class","kafka.producer.DefaultPartitioner");
//props.put("request.required.acks", "1");
KafkaProducer<String, String> producer = new KafkaProducer<>(props);
// Read the data from websocket and send it to consumer
//for (int i = 0; i < 100; i++) {
String fileName = "/Users/Tan/Desktop/feed.json";
try{
BufferedReader file = new BufferedReader(new FileReader(fileName));
String st = file.readLine();
for(int i = 0; i < 100; i++)
{
ProducerRecord<String, String> record = new ProducerRecord<>("mytopic", st);
producer.send(record);
}
}catch(IOException e){
e.printStackTrace();
}
//}
/*
for(int i = 0; i < 100; i++)
{
ProducerRecord<String, String> record2 = new ProducerRecord<>("mytopic", "Hasan-" + i);
producer.send(record2);
}
*/
producer.close();
}
}
消费者
/*
* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates
* and open the template in the editor.
*/
package com.tan;
import kafka.serializer.DefaultDecoder;
import kafka.serializer.StringDecoder;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.api.java.JavaPairInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.kafka.KafkaUtils;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
/**
*
* @author Tan
*/
public class MainKafkaConsumer {
/**
* @param args the command line arguments
*/
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setAppName(MainKafkaConsumer.class.getName())
.setMaster("local[*]");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaStreamingContext ssc = new JavaStreamingContext(sc, new Duration(2000));
Set<String> topics = Collections.singleton("mytopic");
Map<String, String> kafkaParams = new HashMap<>();
kafkaParams.put("metadata.broker.list", "localhost:9092");
JavaPairInputDStream<String, String> directKafkaStream = KafkaUtils.createDirectStream(ssc,
String.class, String.class,
StringDecoder.class, StringDecoder.class,
kafkaParams, topics);
directKafkaStream.foreachRDD(rdd -> {
rdd.foreach(records -> {
System.out.println(records._2);
});
});
/*
directKafkaStream.foreachRDD(rdd -> {
System.out.println("--- New RDD with " + rdd.partitions().size()
+ " partitions and " + rdd.count() + " records");
rdd.foreach(record -> {
System.out.println(record._2);
});
});
*/
ssc.start();
ssc.awaitTermination();
}
}
1条答案
按热度按时间w6lpcovy1#
你的过程很好,重点是avro转换。你的数据没有那么大,1mb到60mb。
这里我有一个类似的过程,从一个mq读取数据,处理数据,转换成avro,发送到kafka,从kafka消费,解析数据并在其他mq中发布。
当我们的数据很大时,比如大于等于1gb时,avro帮助很大。但在某些情况下,我们的数据非常小,比如<10mb。在这种情况下,avro使我们的处理有点慢,在网络传输中没有增益。
我给你的建议是,如果你的网络足够好,不能转换成avro,最好不用avro。为了提高spark端的性能,请使用大量的分区来配置kafka主题,因为如果只有一个分区,spark将无法正确地进行并行化。检查这段文字可以帮助你。