对数组项使用筛选器的elasticsearch聚合

egmofgnx  于 2021-06-14  发布在  ElasticSearch
关注(0)|答案(1)|浏览(400)

我想用一些附加的逻辑来做一个聚合请求,但是我不确定是否可能以及如何做。当我有以下文档时,如何请求数组中没有定义“类型”的位置?我尝试在类型上发送一个子聚合筛选器,但也尝试在该聚合上发送位置“20”get doc\u count 1。
在这种情况下,如何对匹配的聚合项执行一些逻辑操作?
文件:

//document1
{
        "locations": [{
                "code": "20",
                "names": [{
                        "languageCode": "en-GB",
                        "value": "Amsterdam"
                    }
                ]
            }, {
                "type": {
                    "id": 25,
                    "names": [{
                            "languageCode": "en-GB",
                            "value": "area"
                        }
                    ]
                },
                "code": "21",
                "names": [{
                        "languageCode": "en-GB",
                        "value": "Amsterdam-South"
                    }
                ]
            }
        ]
    }
//Document 2
    {
        "locations": [{
                "code": "22",
                "names": [{
                        "languageCode": "en-GB",
                        "value": "DenHague"
                    }, {
                        "languageCode": "nl-NL",
                        "value": "DenHaag"
                    }
                ]
            }
        ]
    }

请求:

{
    "aggs": {
        "Filter_Location": {
            "aggs": {
                "SubType": {
                    "filter": {
                        "exists": {
                            "field": "locations.type"
                        }
                    }
                }           },
            "terms": {
                "field": "locations.code.keyword"
            }
        }
    },
    "size": 0
}

结果:

{
    "aggregations": {
        "Filter_Location": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [{
                    "key": "20",
                    "doc_count": 1,
                    "SubType": {
                        "doc_count": 1
                    },
                    "groupByAccoId": {
                        "value": 1
                    }
                }, {
                    "key": "21",
                    "doc_count": 1,
                    "SubType": {
                        "doc_count": 1
                    },
                    "groupByAccoId": {
                        "value": 1
                    }
                }, {
                    "key": "22",
                    "doc_count": 1,
                    "SubType": {
                        "doc_count": 0
                    },
                    "groupByAccoId": {
                        "value": 1
                    }
                }
            ]
        }
    }
}

预期结果:

{
    "aggregations": {
        "Filter_Location": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [{
                    "key": "20",
                    "doc_count": 1,
                    "SubType": {
                        "doc_count": 0
                    }
                }, {
                    "key": "21",
                    "doc_count": 1,
                    "SubType": {
                        "doc_count": 1
                    }
                }, {
                    "key": "22",
                    "doc_count": 1,
                    "SubType": {
                        "doc_count": 0
                    }
                }
            ]
        }
    }
}
nlejzf6q

nlejzf6q1#

为了防止 locations 数组展平您需要将索引Map设置为 nested :

PUT ind
{
  "mappings": {
    "properties": {
      "locations": {
        "type": "nested"
      }
    }
  }
}

接收文档后,此查询将获取所需的结果:

GET ind/_search
{
  "size": 0,
  "aggs": {
    "Filter_Location_parent": {
      "nested": {
        "path": "locations"
      },
      "aggs": {
        "Filter_Location": {
          "terms": {
            "field": "locations.code.keyword"
          },
          "aggs": {
            "SubType": {
              "filter": {
                "exists": {
                  "field": "locations.type"
                }
              }
            }
          }
        }
      }
    }
  }
}

相关问题