python—在从csv文件读取输入时,如何在cassandra中插入数据以达到50k/秒的吞吐量?

fxnxkyjh  于 2021-06-14  发布在  Cassandra
关注(0)|答案(2)|浏览(424)

我的目标是提高cassandra中版本控制数据的吞吐量。我使用了并发读写,还增加了代码从文件中读取的块大小。我的机器是16gb,有8个核,是的,我已经将cassandra的yaml文件更改为10k并发读写,计时后,我发现10000次写/读不到一秒钟。我的最小可行代码是:

import json
import logging
import os
import sys
from datetime import datetime
from hashlib import sha256, sha512, sha1

import pandas as pd
from cassandra import ConsistencyLevel, WriteTimeout
from cassandra.cluster import (EXEC_PROFILE_DEFAULT, BatchStatement, Cluster,
                               ExecutionProfile)
from cassandra.concurrent import (execute_concurrent,
                                  execute_concurrent_with_args)
from cassandra.query import SimpleStatement, dict_factory

class PythonCassandraExample:
    def __init__(self, file_to_be_versioned, working_dir=os.getcwd(), mode='append'):
        self.cluster = None
        self.session = None
        self.keyspace = None
        self.log = None
        self.mode = mode
        self.file_to_be_versioned = file_to_be_versioned
        self.insert_patch = []
        self.delete_patch = []
        self.update_patch = []
        self.working_dir = working_dir

    def __del__(self):
        self.cluster.shutdown()

    def createsession(self):
        profile = ExecutionProfile(
            row_factory=dict_factory,
            request_timeout=6000
        )
        self.cluster = Cluster(
            ['localhost'],
            connect_timeout=50,
            execution_profiles={
                EXEC_PROFILE_DEFAULT: profile
            }
        )
        self.session = self.cluster.connect(self.keyspace)

    def getsession(self):
        return self.session

    # How about Adding some log info to see what went wrong
    def setlogger(self):
        log = logging.getLogger()
        log.setLevel('INFO')
        handler = logging.StreamHandler()
        handler.setFormatter(logging.Formatter(
            "%(asctime)s [%(levelname)s] %(name)s: %(message)s"))
        log.addHandler(handler)
        self.log = log
    # Create Keyspace based on Given Name

    def handle_error(self, exception):
        self.log.error("Failed to fetch user info: %s", exception)

    def createkeyspace(self, keyspace):
        """
        :param keyspace:  The Name of Keyspace to be created
        :return:
        """
        # Before we create new lets check if exiting keyspace; we will drop that and create new
        self.log.info("creating keyspace...")
        self.session.execute("""
                CREATE KEYSPACE IF NOT EXISTS %s
                WITH replication = { 'class': 'SimpleStrategy', 'replication_factor': '1' }
                """ % keyspace)
        self.log.info("setting keyspace...")
        self.keyspace = keyspace
        self.session.set_keyspace(self.keyspace)

    def create_table_and_set_version(self, table_name):
        self.table_name = table_name.lower()
        table_select_query = "SELECT table_name FROM system_schema.tables WHERE keyspace_name='{}' AND table_name='{}'".format(
            self.keyspace, self.table_name)
        print(table_select_query)
        table_exists = self.session.execute(table_select_query).one()
        self.log.info("Table exists: {}".format(table_exists))
        if table_exists:
            self.log.info(
                "Datapackage already exists! Checking the last version")
            self.version = self.session.execute(
                "SELECT version FROM {} LIMIT 1".format(self.table_name)).one()
            self.log.info(
                "The version fetched is: {} of type: {}".format(
                    self.version, type(self.version)
                )
            )
            if not self.version:
                self.version = 0
            else:
                self.version = self.version['version']
        else:
            self.log.info("Table didn't exist!")
            self.version = 0
        self.target_version = int(str(self.version)) + 1
        self.log.info(
            "Current and candidate versions are: {}, {}".format(
                self.version,
                self.target_version
            )
        )
        # c_sql = "CREATE TABLE IF NOT EXISTS {} (id varchar, version int, row varchar, row_hash varchar, PRIMARY KEY(id, version)) with clustering order by (version desc)".format(
        #     self.table_name)
        c_sql = "CREATE TABLE IF NOT EXISTS {} (id varchar, version int, row_hash varchar, PRIMARY KEY(version, id))".format(
            self.table_name
        )
        self.session.execute(c_sql)
        self.log.info("DP Table Created !!!")
        self.log.info("Current and candidate versions are: {}, {}".format(
            self.version, self.target_version))

    def push_to_update_patch(self, update_patch_file, last_patch=False):
        if len(self.update_patch) >= 10000:
            with open(update_patch_file, mode='a') as json_file:
                json_file.writelines(
                    self.update_patch
                )
            del self.update_patch[:]
        if last_patch is True and len(self.update_patch) > 0:
            with open(update_patch_file, mode='a') as json_file:
                json_file.writelines(
                    self.update_patch
                )
            del self.update_patch[:]

    def push_to_insert_patch(self, insert_patch_file, last_patch=False):
        if len(self.insert_patch) >= 10000:
            with open(insert_patch_file, mode='a') as json_file:
                json_file.writelines(
                    self.insert_patch
                )
            del self.insert_patch[:]
        if last_patch is True and len(self.update_patch) > 0:
            with open(insert_patch_file, mode='a') as json_file:
                json_file.writelines(
                    self.insert_patch
                )
            del self.insert_patch[:]

    def push_to_delete_patch(self, delete_patch_file, last_patch=False):
        if len(self.delete_patch) >= 10000:
            with open(delete_patch_file, mode='a') as json_file:
                json_file.writelines(
                    self.delete_patch
                )
            del self.delete_patch[:]
        if last_patch is True and len(self.delete_patch) > 0:
            with open(delete_patch_file, mode='a') as json_file:
                json_file.writelines(
                    self.delete_patch
                )
            del self.delete_patch[:]

    def push_to_patch(self, key, value, mode='update'):
        return
        if key is None or value is None:
            raise ValueError(
                "Key or value or both not specified for making a patch. Exiting now."
            )
        data = {}
        data["id"] = str(key)
        data["data"] = json.dumps(value, default=str)
        # convert dict to json str so that the patch is a list of line jsons.
        data = json.dumps(data, default=str)
        json_patch_file = os.path.join(
            self.working_dir,
            "version_{}_{}.json".format(
                self.target_version, mode
            )
        )
        if mode == 'update':
            self.update_patch.append(
                data + "\n"
            )
            self.push_to_update_patch(
                json_patch_file
            )
        if mode == 'insert':
            self.insert_patch.append(
                data + "\n"
            )
            self.push_to_insert_patch(
                json_patch_file
            )
        if mode == 'delete':
            self.delete_patch.append(
                data + "\n"
            )
            self.push_to_delete_patch(
                json_patch_file
            )

    def clone_version(self):
        if self.mode == 'replace':
            return
        self.log.info("Cloning version")
        start_time = datetime.utcnow()
        if self.version == 0:
            return
        insert_sql = self.session.prepare(
            (
                "INSERT INTO  {} ({}, {}, {}) VALUES (?,?,?)"
            ).format(
                self.table_name, "id", "version", "row_hash"
            )
        )
        futures = []
        current_version_query = "SELECT id, row_hash FROM {} WHERE version={}".format(
            self.table_name, self.version
        )
        current_version_rows = self.session.execute(
            current_version_query
        )
        for current_version_row in current_version_rows:
            params = (
                current_version_row['id'],
                self.target_version,
                current_version_row['row_hash']
            )
            futures.append(
                (
                    insert_sql,
                    params
                )
            )
        self.log.info(
            "Time taken to clone the version is: {}".format(
                datetime.utcnow() - start_time
            )
        )

    def hash_string(self, value):
        return (sha1(str(value).encode('utf-8')).hexdigest())

    def hash_row(self, row):
        row_json = json.dumps(row, default=str)
        return (self.hash_string(row_json))

    def insert_data(self, generate_diff=False):
        self.generate_diff = generate_diff
        destination = self.file_to_be_versioned
        chunksize = 100000
        concurrency_value = 1000
        patch_length_for_cql = chunksize
        chunks = pd.read_csv(destination, chunksize=chunksize)
        chunk_counter = 0
        insert_sql = self.session.prepare(
            (
                "INSERT INTO  {} ({}, {}, {}) VALUES (?,?,?)"
            ).format(
                self.table_name, "id", "version", "row_hash"
            )
        )
        select_sql = self.session.prepare(
            (
                "SELECT id, version, row_hash FROM {} WHERE  version=? AND id=?"
            ).format(
                self.table_name
            )
        )
        futures = []
        check_for_patch = [] #this list comprises rows with ids and values for checking whether its an update/insert
        rows_for_checking_patch = []
        start_time = datetime.utcnow()
        for df in chunks:
            rows_for_checking_patch = df.values.tolist()
            chunk_counter += 1
            df["row_hash"] = df.apply(
                self.hash_row
            )
            df["key"] = df["column_test_3"].apply(
                self.hash_string
            )
            keys = list(df["key"])
            row_hashes = list(df["row_hash"])
            start_time_de_params = datetime.utcnow()
            for i in range(chunksize):
                row_check = None
                params = (
                    str(keys[i]),
                    self.target_version, 
                    str(row_hashes[i])
                )
                check_for_patch_params = (
                    self.version,
                    str(keys[i])
                )
                check_for_patch.append(
                    (
                        select_sql,
                        check_for_patch_params
                    )
                )
                futures.append(
                    (
                        insert_sql,
                        params
                    )
                )
            self.log.info("Time for params: {}".format(datetime.utcnow() - start_time_de_params))
            if len(check_for_patch) >= patch_length_for_cql:
                start_time_de_update = datetime.utcnow()
                results = execute_concurrent(
                    self.session, check_for_patch, concurrency=concurrency_value, raise_on_first_error=False
                )
                self.log.info("Time for just the query: {}".format(datetime.utcnow() - start_time_de_update))
                row_counter_for_patch = 0
                for (success, result) in results:
                    if not result:
                        self.push_to_patch(
                            keys[row_counter_for_patch],
                            rows_for_checking_patch[row_counter_for_patch],
                            mode='insert'
                        )
                        row_counter_for_patch += 1
                        continue
                    if not success:
                        # result will be an Exception
                        self.log.error("Error has occurred in insert cql")
                        self.handle_error(result)
                    id_to_be_compared = result[0]["id"]
                    row_hash_to_be_compared = result[0]["row_hash"]
                    if (row_hash_to_be_compared != row_hashes[row_counter_for_patch]):
                        self.push_to_patch(
                            id_to_be_compared,
                            rows_for_checking_patch[row_counter_for_patch]["row"],
                            mode='update'
                        )
                    row_counter_for_patch += 1
                del check_for_patch[:]
                del rows_for_checking_patch[:]
                row_counter_for_patch = 0
                self.log.info("Time for check patch: {}".format(
                    datetime.utcnow() - start_time_de_update
                ))

            if (len(futures) >= patch_length_for_cql):
                start_time_de_insert = datetime.utcnow()
                results = execute_concurrent(
                    self.session, futures, concurrency=concurrency_value, raise_on_first_error=False
                )
                for (success, result) in results:
                    if not success:
                        # result will be an Exception
                        self.log.error("Error has occurred in insert cql")
                        self.handle_error(result)
                del futures[:]
                self.log.info("Time for insert patch: {}".format(
                    datetime.utcnow() - start_time_de_insert
                    ))
            self.log.info(chunk_counter)
            # self.log.info("This chunk got over in {}".format(datetime.utcnow() - start_time))

        if len(check_for_patch) > 0:
            results = execute_concurrent(
                self.session, check_for_patch, concurrency=concurrency_value, raise_on_first_error=False
            )
            row_counter_for_patch = 0
            for (success, result) in results:
                if not result:
                    self.push_to_patch(
                        rows_for_checking_patch[row_counter_for_patch]["id"],
                        rows_for_checking_patch[row_counter_for_patch]["row"],
                        mode='insert'
                    )
                    row_counter_for_patch += 1
                    continue
                if not success:
                    # result will be an Exception
                    self.log.error("Error has occurred in insert cql")
                    self.handle_error(result)
                id_to_be_compared = result[0]["id"]
                row_hash_to_be_compared = result[0]["row_hash"]
                if (row_hash_to_be_compared != rows_for_checking_patch[row_counter_for_patch]["row_hash"]):
                    self.push_to_patch(
                        id_to_be_compared,
                        rows_for_checking_patch[row_counter_for_patch]["row"],
                        mode='update'
                    )
                    row_counter_for_patch += 1
            del check_for_patch[:]
            del rows_for_checking_patch[:]

        if len(futures) > 0:   # in case the last dataframe has #rows < 10k.
            results = execute_concurrent(
                self.session, futures, concurrency=concurrency_value, raise_on_first_error=False
            )
            for (success, result) in results:
                if not success:
                    self.handle_error(result)
            del futures[:]
            self.log.info(chunk_counter)

        # Check the delete patch
        if self.generate_diff is True and self.mode is 'replace' and self.version is not 0:
            self.log.info("We got to find the delete patch!")
            start_time = datetime.utcnow()
            current_version_query = "SELECT id, row, row_hash FROM {} WHERE version={}".format(
                self.table_name, self.version
            )
            current_version_rows = self.session.execute(
                current_version_query
            )
            for current_version_row in current_version_rows:
                row_check_query = "SELECT {} FROM {} WHERE {}={} AND {}='{}' ".format(
                    "id", self.table_name, "version", self.target_version, "id", current_version_row.id
                )
                row_check = self.session.execute(row_check_query).one()
                if row_check is not None:  # row exists in both version.
                    continue
                self.push_to_patch(
                    current_version_row.id,
                    current_version_row.id,
                    mode="delete"
                )
        print("Complete insert's duration is: {}".format(
            datetime.utcnow() - start_time)
        )
        # Calling last_patch for all remaining diffs
        modes = [
            'update',
            'insert',
            'delete'
        ]
        for mode in modes:
            json_patch_file = os.path.join(
                self.working_dir,
                "version_{}_{}.json".format(
                    self.target_version, mode
                )
            )
            if mode == 'update':
                self.push_to_update_patch(
                    json_patch_file,
                    last_patch=True
                )
            if mode == 'insert':
                self.push_to_insert_patch(
                    json_patch_file,
                    last_patch=True
                )
            if mode == 'delete':
                self.push_to_delete_patch(
                    json_patch_file,
                    last_patch=True
                )

if __name__ == '__main__':
    example1 = PythonCassandraExample(
        file_to_be_versioned="hundred_million_eleven_columns.csv"
    )
    example1.createsession()
    example1.setlogger()
    example1.createkeyspace('sat_athena_one')
    example1.create_table_and_set_version('five_hundred_rows')
    example1.clone_version()
    example1.insert_data(generate_diff=True)

我有一个100米行和11列的csv文件。用于生成此类文件的脚本是:

import csv
import sys
import os
import pandas as pd

file_name = "hundred_million_eleven_columns.csv"
rows_list = []
chunk_counter = 1
headers = [
    "column_test_1",
    "column_test_2",
    "column_test_3",
    "column_test_4",
    "column_test_5",
    "column_test_6",
    "column_test_7",
    "column_test_8",
    "column_test_9",
    "column_test_10",
    "column_test_11",
]

file_exists = os.path.isfile(file_name)
with open(file_name, 'a') as csvfile:
    writer = csv.DictWriter(csvfile, delimiter=',',
                            lineterminator='\n', fieldnames=headers)
    if not file_exists:
        writer.writeheader()  # file doesn't exist yet, write a header

for i in range(100000000):
    dict1 = [
        i, i+1, i+2, i+3, i+4, i+5, i+6, i+7, i+8, i+9, i+10
    ]
    # get input row in dictionary format
    # key = col_name
    rows_list.append(dict1)
    if len(rows_list) == 100000:
        df = pd.DataFrame(rows_list)
        df.to_csv(file_name,
                  mode='a', index=False, header=False)
        del rows_list[:]
        del df
        print(chunk_counter)
        chunk_counter += 1
if len(rows_list) > 0:
    df = pd.DataFrame(rows_list)
    df.to_csv(file_name, mode='a', index=False, header=False)
    del rows_list[:]
    del df
    print(chunk_counter)
    chunk_counter += 1

我的Cassandra的yaml档案在这里

vecaoik1

vecaoik11#

确保您的代码甚至可以在50k时生成这么多。如果你删除了execute,你甚至可以读取csv并快速生成sha吗?在这个大小的主机上,一个带有ssd的c示例应该能够每秒进行50k次写入,但是在c写入之外还有很多事情可能是问题的一部分。
如果您的并发读/写超过128,您将遇到一些严重的问题。在一个能够处理它的系统上,64次甚至足以超过每秒20万次写入。你真的会让事情变得更糟。没有io参与其中,因此文档中指出,8倍的核心计数是一个很好的值。我甚至建议将并发性从10k降低到1024甚至更低。你可以玩不同的设置,看看它如何影响事情。
确保python在安装时是用cython编译的,否则它将在序列化中占主导地位。说到python驱动程序是最慢的,所以请记住这一点。
你在sha上的阻塞可能是大多数时间。没有perf跟踪-只要用一个固定的值来尝试它就可以看到区别。
“我的机器”--这是单节点群集吗?如果您将可用性抛出窗口,那么不妨禁用键空间上的持久的\u写操作,以加快写操作的速度。缺少堆设置,但请确保至少有8gb,即使这是一个非常小的主机cassandra需要的内存。如果不读取,请考虑禁用keycache,或者在作业运行时禁用压缩,然后再启用。

yyhrrdl8

yyhrrdl82#

注解建议8芯数。
另一方面,由于写入几乎从不受io限制,“并发写入”的理想数量取决于系统中的内核数量(8
内核的数量是一个很好的经验法则。
64适用于8芯机器。
并发读取:64
并发写入:64
并发计数器写入:64
建议使用此限制,因为除正常io外,还有许多其他io操作。例如)写入提交日志、缓存、压缩、复制、查看(如果存在)
一些经验法则
磁盘\u优化\u策略:ssd//如果您的磁盘是hdd,请将值更改为spining
使用专用的提交日志磁盘。建议使用ssd。
更多磁盘=更好的性能

相关问题