2062548992)!错误

9udxz4iz  于 2021-06-15  发布在  Cassandra
关注(0)|答案(2)|浏览(297)

我想通过sparkgraphcomputer对janusgraph进行olap计算,但是我现在遇到了这个错误。有人能替我回答吗?
我的存储后端是cassandra,有4000万个点和1.2亿个面。

这是配置文件。

gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.graphReader=org.janusgraph.hadoop.formats.cassandra.Cassandra3InputFormat
gremlin.hadoop.graphWriter=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat

gremlin.hadoop.jarsInDistributedCache=true
gremlin.hadoop.inputLocation=none
gremlin.hadoop.outputLocation=output

janusgraphmr.ioformat.conf.storage.backend=cql
janusgraphmr.ioformat.conf.storage.hostname=ip1,ip2,ip3,ip4...
janusgraphmr.ioformat.conf.storage.port=9042
janusgraphmr.ioformat.conf.storage.cql.keyspace=probe
storage.cassandra.thrift.frame-size=4097

cassandra.input.partitioner.class=org.apache.cassandra.dht.Murmur3Partitioner

spark.master=local[4]
spark.executor.memory=1g
spark.serializer=org.apache.spark.serializer.KryoSerializer
spark.kryo.registrator=org.apache.tinkerpop.gremlin.spark.structure.io.gryo.GryoRegistrator

这是错误的信息。

Caused by: java.lang.RuntimeException: org.apache.thrift.transport.TTransportException: Read a negative frame size (-2062548992)!
    at org.apache.cassandra.hadoop.AbstractColumnFamilyInputFormat.getRangeMap(AbstractColumnFamilyInputFormat.java:343)
    at org.apache.cassandra.hadoop.AbstractColumnFamilyInputFormat.getSplits(AbstractColumnFamilyInputFormat.java:125)
    at org.janusgraph.hadoop.formats.cassandra.CassandraBinaryInputFormat.getSplits(CassandraBinaryInputFormat.java:60)
    at org.janusgraph.hadoop.formats.util.GiraphInputFormat.getSplits(GiraphInputFormat.java:64)
    at org.apache.spark.rdd.NewHadoopRDD.getPartitions(NewHadoopRDD.scala:125)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
    at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:35)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:252)
    at org.apache.spark.rdd.RDD$$anonfun$partitions$2.apply(RDD.scala:250)
    at scala.Option.getOrElse(Option.scala:121)
    at org.apache.spark.rdd.RDD.partitions(RDD.scala:250)
    at org.apache.spark.Partitioner$$anonfun$defaultPartitioner$2.apply(Partitioner.scala:66)
    at org.apache.spark.Partitioner$$anonfun$defaultPartitioner$2.apply(Partitioner.scala:66)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
    at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
    at scala.collection.immutable.List.foreach(List.scala:381)
    at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
    at scala.collection.immutable.List.map(List.scala:285)
    at org.apache.spark.Partitioner$.defaultPartitioner(Partitioner.scala:66)
    at org.apache.spark.api.java.JavaPairRDD.reduceByKey(JavaPairRDD.scala:547)
    at org.apache.tinkerpop.gremlin.spark.process.computer.SparkExecutor.executeVertexProgramIteration(SparkExecutor.java:166)
    at org.apache.tinkerpop.gremlin.spark.process.computer.SparkGraphComputer.lambda$submitWithExecutor$1(SparkGraphComputer.java:319)
    at java.util.concurrent.FutureTask.run(FutureTask.java:266)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.thrift.transport.TTransportException: Read a negative frame size (-2062548992)!
    at org.apache.thrift.transport.TFramedTransport.readFrame(TFramedTransport.java:133)
    at org.apache.thrift.transport.TFramedTransport.read(TFramedTransport.java:101)
    at org.apache.thrift.transport.TTransport.readAll(TTransport.java:86)
    at org.apache.thrift.protocol.TBinaryProtocol.readAll(TBinaryProtocol.java:429)
    at org.apache.thrift.protocol.TBinaryProtocol.readI32(TBinaryProtocol.java:318)
    at org.apache.thrift.protocol.TBinaryProtocol.readMessageBegin(TBinaryProtocol.java:219)
    at org.apache.thrift.TServiceClient.receiveBase(TServiceClient.java:69)
    at org.apache.cassandra.thrift.Cassandra$Client.recv_describe_local_ring(Cassandra.java:1318)
    at org.apache.cassandra.thrift.Cassandra$Client.describe_local_ring(Cassandra.java:1305)
    at org.apache.cassandra.hadoop.AbstractColumnFamilyInputFormat.getRangeMap(AbstractColumnFamilyInputFormat.java:335)
    ... 48

我希望有人能帮我回答这个问题。谢谢!

z4bn682m

z4bn682m1#

9042是cql本机二进制格式not thrift的端口,因此通过线路传输的数据与thrift客户端期望的不匹配。thrift是端口9160,已弃用,请确保在中启用 cassandra.yaml 通过 start_rpc .
当您为cql配置getsplits时,将使用getsplits调用thrift(这是一种非常古老的机制)。客户机应该使用 system.size_estimates 使用cql本机表,这样就可以删除旧客户端。spark客户端就是一个很好的例子。
我认为这看起来像是janus图表中的一个错误,应该和他们一起开罚单。

wztqucjr

wztqucjr2#

在Cassandra家里,执行:

sh ./bin/cassandra -f
sh ./bin/nodetool enablethrift

相关问题