flink任务管理器超时

iugsix8n  于 2021-06-21  发布在  Flink
关注(0)|答案(2)|浏览(630)

随着越来越多的记录被处理,我的程序变得非常慢。我最初认为这是由于过度的内存消耗,因为我的程序是字符串密集型的(我使用的是java 11,所以应该尽可能使用紧凑的字符串),所以我增加了jvm堆:

-Xms2048m
-Xmx6144m

我还增加了任务管理器的内存和超时, flink-conf.yaml :

jobmanager.heap.size: 6144m
heartbeat.timeout: 5000000

然而,这些都无助于解决这个问题。这个程序在处理了大约350万条记录之后,仍然非常慢,只剩下大约50万条了。当程序接近350万大关时,它会变得非常慢,直到最终超时,总执行时间约为11分钟。
我在visualvm中检查了内存消耗,但内存消耗从未超过约700mb。我的flink管道如下所示:

final StreamExecutionEnvironment environment = StreamExecutionEnvironment.createLocalEnvironment(1);
environment.setParallelism(1);
DataStream<Tuple> stream = environment.addSource(new TPCHQuery3Source(filePaths, relations));
stream.process(new TPCHQuery3Process(relations)).addSink(new FDSSink());
environment.execute("FlinkDataService");

如果大部分工作是在process函数中完成的,那么我将实现数据库连接算法,并将列存储为字符串,特别是我将实现tpch基准的query 3,如果您愿意,请检查这里https://examples.citusdata.com/tpch_queries.html.
超时错误如下:

java.util.concurrent.TimeoutException: Heartbeat of TaskManager with id <id> timed out.

一旦我也犯了这个错误:

Exception in thread "pool-1-thread-1" java.lang.OutOfMemoryError: Java heap space

另外,我的visualvm监控,截图是在事情变得非常缓慢的时候拍摄的:

下面是我的源函数的运行循环:

while (run) {
        readers.forEach(reader -> {
            try {
                String line = reader.readLine();
                if (line != null) {
                    Tuple tuple = lineToTuple(line, counter.get() % filePaths.size());
                    if (tuple != null && isValidTuple(tuple)) {
                        sourceContext.collect(tuple);
                    }
                } else {
                    closedReaders.add(reader);
                    if (closedReaders.size() == filePaths.size()) {
                        System.out.println("ALL FILES HAVE BEEN STREAMED");
                        cancel();
                    }
                }
                counter.getAndIncrement();
            } catch (IOException e) {
                e.printStackTrace();
            }
        });
    }

我基本上读取了我需要的3个文件的每一行,根据文件的顺序,我构造了一个tuple对象,它是我的自定义类tuple,表示表中的一行,如果它是有效的,则发出这个tuple,即fullfils在日期上的特定条件。
我还建议jvm在第一百万、一百五十万、两百万和二百五十万条记录中进行垃圾收集,如下所示:

System.gc()

关于如何优化这个有什么想法吗?

4jb9z9bj

4jb9z9bj1#

这些是我在link独立集群上为计算tpc-h查询03而更改的属性。

jobmanager.memory.process.size: 1600m
heartbeat.timeout: 100000
taskmanager.memory.process.size: 8g # defaul: 1728m

我实现了这个查询,只对order表进行流式处理,并将其他表作为一个状态。另外,我将计算作为一个无窗口查询,我认为这更有意义,而且速度更快。

public class TPCHQuery03 {

    private final String topic = "topic-tpch-query-03";

    public TPCHQuery03() {
        this(PARAMETER_OUTPUT_LOG, "127.0.0.1", false, false, -1);
    }

    public TPCHQuery03(String output, String ipAddressSink, boolean disableOperatorChaining, boolean pinningPolicy, long maxCount) {
        try {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime);

            if (disableOperatorChaining) {
                env.disableOperatorChaining();
            }

            DataStream<Order> orders = env
                    .addSource(new OrdersSource(maxCount)).name(OrdersSource.class.getSimpleName()).uid(OrdersSource.class.getSimpleName());

            // Filter market segment "AUTOMOBILE"
            // customers = customers.filter(new CustomerFilter());

            // Filter all Orders with o_orderdate < 12.03.1995
            DataStream<Order> ordersFiltered = orders
                    .filter(new OrderDateFilter("1995-03-12")).name(OrderDateFilter.class.getSimpleName()).uid(OrderDateFilter.class.getSimpleName());

            // Join customers with orders and package them into a ShippingPriorityItem
            DataStream<ShippingPriorityItem> customerWithOrders = ordersFiltered
                    .keyBy(new OrderKeySelector())
                    .process(new OrderKeyedByCustomerProcessFunction(pinningPolicy)).name(OrderKeyedByCustomerProcessFunction.class.getSimpleName()).uid(OrderKeyedByCustomerProcessFunction.class.getSimpleName());

            // Join the last join result with Lineitems
            DataStream<ShippingPriorityItem> result = customerWithOrders
                    .keyBy(new ShippingPriorityOrderKeySelector())
                    .process(new ShippingPriorityKeyedProcessFunction(pinningPolicy)).name(ShippingPriorityKeyedProcessFunction.class.getSimpleName()).uid(ShippingPriorityKeyedProcessFunction.class.getSimpleName());

            // Group by l_orderkey, o_orderdate and o_shippriority and compute revenue sum
            DataStream<ShippingPriorityItem> resultSum = result
                    .keyBy(new ShippingPriority3KeySelector())
                    .reduce(new SumShippingPriorityItem(pinningPolicy)).name(SumShippingPriorityItem.class.getSimpleName()).uid(SumShippingPriorityItem.class.getSimpleName());

            // emit result
            if (output.equalsIgnoreCase(PARAMETER_OUTPUT_MQTT)) {
                resultSum
                        .map(new ShippingPriorityItemMap(pinningPolicy)).name(ShippingPriorityItemMap.class.getSimpleName()).uid(ShippingPriorityItemMap.class.getSimpleName())
                        .addSink(new MqttStringPublisher(ipAddressSink, topic, pinningPolicy)).name(OPERATOR_SINK).uid(OPERATOR_SINK);
            } else if (output.equalsIgnoreCase(PARAMETER_OUTPUT_LOG)) {
                resultSum.print().name(OPERATOR_SINK).uid(OPERATOR_SINK);
            } else if (output.equalsIgnoreCase(PARAMETER_OUTPUT_FILE)) {
                StreamingFileSink<String> sink = StreamingFileSink
                        .forRowFormat(new Path(PATH_OUTPUT_FILE), new SimpleStringEncoder<String>("UTF-8"))
                        .withRollingPolicy(
                                DefaultRollingPolicy.builder().withRolloverInterval(TimeUnit.MINUTES.toMillis(15))
                                        .withInactivityInterval(TimeUnit.MINUTES.toMillis(5))
                                        .withMaxPartSize(1024 * 1024 * 1024).build())
                        .build();

                resultSum
                        .map(new ShippingPriorityItemMap(pinningPolicy)).name(ShippingPriorityItemMap.class.getSimpleName()).uid(ShippingPriorityItemMap.class.getSimpleName())
                        .addSink(sink).name(OPERATOR_SINK).uid(OPERATOR_SINK);
            } else {
                System.out.println("discarding output");
            }

            System.out.println("Stream job: " + TPCHQuery03.class.getSimpleName());
            System.out.println("Execution plan >>>\n" + env.getExecutionPlan());
            env.execute(TPCHQuery03.class.getSimpleName());
        } catch (IOException e) {
            e.printStackTrace();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    public static void main(String[] args) throws Exception {
        new TPCHQuery03();
    }
}

这里的UDF是:ordersource、orderkeyedbycustomerprocessfunction、shippingprioritykeyedprocessfunction和sumshippingpriorityitem。我用的是 com.google.common.collect.ImmutableList 因为状态不会被更新。另外,我只保留必要的专栏,如 ImmutableList<Tuple2<Long, Double>> lineItemList .

new9mtju

new9mtju2#

字符串 intern() 救了我。我在把每根线都存储在Map上之前都做过实习,效果很不错。

相关问题