scala—在flink的datastream api中将Parquet文件作为数据流进行连续处理

vcudknz3  于 2021-06-21  发布在  Flink
关注(0)|答案(1)|浏览(432)

我有一个关于hdfs的Parquet文件。它每天都被一个新的覆盖。我的目标是使用datastream api在flink作业中以数据流的形式连续地发出这个Parquet文件(当它发生变化时)。最终目标是在广播状态下使用文件内容,但这超出了这个问题的范围。
要连续处理文件,有一个非常有用的api:关于数据源的数据源。更具体地说,fileprocessingmode.process\u:这正是我需要的。这适用于读取/监视文本文件,没问题,但不适用于Parquet文件:

// Partial version 1: the raw file is processed continuously
val path: String = "hdfs://hostname/path_to_file_dir/"
val textInputFormat: TextInputFormat = new TextInputFormat(new Path(path))
// monitor the file continuously every minute
val stream: DataStream[String] = streamExecutionEnvironment.readFile(textInputFormat, path, FileProcessingMode.PROCESS_CONTINUOUSLY, 60000)

为了处理Parquet文件,我可以使用hadoop输入格式,使用这个api:usinghadoopinputformats。但是,此api没有fileprocessingmode参数,并且仅处理文件一次:

// Partial version 2: the parquet file is only processed once
val parquetPath: String = "/path_to_file_dir/parquet_0000"
// raw text format
val hadoopInputFormat: HadoopInputFormat[Void, ArrayWritable] = HadoopInputs.readHadoopFile(new MapredParquetInputFormat(), classOf[Void], classOf[ArrayWritable], parquetPath)
val stream: DataStream[(Void, ArrayWritable)] = streamExecutionEnvironment.createInput(hadoopInputFormat).map { record =>
  // process the record here ...
}

我想以某种方式结合这两个api,通过datastreamapi连续处理Parquet文件。你们有人试过这样的吗?

dxpyg8gm

dxpyg8gm1#

在浏览完flink的代码之后,看起来这两个api是相对不同的,似乎不可能将它们合并在一起。
另一种方法(我将在这里详述)是定义自己的sourcefunction,它将定期读取文件:

class ParquetSourceFunction extends SourceFunction[Int] {
  private var isRunning = true

  override def run(ctx: SourceFunction.SourceContext[Int]): Unit = {
    while (isRunning) {
      val path = new Path("path_to_parquet_file")
      val conf = new Configuration()

      val readFooter = ParquetFileReader.readFooter(conf, path, ParquetMetadataConverter.NO_FILTER)
      val metadata = readFooter.getFileMetaData
      val schema = metadata.getSchema
      val parquetFileReader = new ParquetFileReader(conf, metadata, path, readFooter.getBlocks, schema.getColumns)
      var pages: PageReadStore = null
      try {
        while ({ pages = parquetFileReader.readNextRowGroup; pages != null }) {
          val rows = pages.getRowCount
          val columnIO = new ColumnIOFactory().getColumnIO(schema)
          val recordReader = columnIO.getRecordReader(pages, new GroupRecordConverter(schema))
          (0L until rows).foreach { _ =>
            val group = recordReader.read()
            val my_integer = group.getInteger("field_name", 0)
            ctx.collect(my_integer)
          }
        }
      }

      // do whatever logic suits you to stop "watching" the file
      Thread.sleep(60000)
    }
  }

  override def cancel(): Unit = isRunning = false
}

然后,使用streamexecutionenvironment注册此源:

val dataStream: DataStream[Int] = streamExecutionEnvironment.addSource(new ParquetProtoSourceFunction)
// do what you want with your new datastream

相关问题