tomcat(8.5.32)服务器中的opencv库无法执行

vatpfxk5  于 2021-06-27  发布在  Java
关注(0)|答案(0)|浏览(512)

图像处理代码设置时遇到的问题。尽管做了所有的代码更改和不同的方法来面对这个问题。
使用的库–opencv–3.4.2使用的jar–opencv-3.4.2-0.4j-3.4.8
pom.xml中添加的行

<!-- https://mvnrepository.com/artifact/org.openpnp/opencv -->
    <dependency>
        <groupId>org.openpnp</groupId>
        <artifactId>opencv</artifactId>
        <version>3.4.2-0</version>
    </dependency>

<!-- https://mvnrepository.com/artifact/net.sourceforge.tess4j/tess4j -->
    <dependency>
        <groupId>net.sourceforge.tess4j</groupId>
        <artifactId>tess4j</artifactId>
        <version>3.4.8</version>
    </dependency>

opencv安装步骤:
从官方网站下载opencv.exe
运行opencv.exe,它将创建一个opencv文件夹
我们现在有了opencv库,可以用于eclipse。
tesseract安装步骤:
从官方链接下载tess4j.zip文件
下载后解压缩zip文件夹
提供tess4j文件夹的路径
以下是我们在eclipse中为安装程序执行的步骤:
我们通过提供从构建路径设置到opencv库的路径,添加了本机库
我们下载了tesseract进行图像读取。
我们在代码中提供了tesseraact的路径
我们使用system.loadlibrary(core.native\u library\u name)和opencv.loadlocally()加载库。
然后我们进行了war导出以进行部署,apachetomcat中没有任何更改或设置
对于在tomcat中加载库,我们必须在这里提供一些设置:-现在对于我们使用的新代码,在代码中加载库静态类(正如在堆栈溢出上所述的解决方案)在这里system.loadlibrary不起作用,我们必须使用system.load和硬编码路径,这会导致内部错误
我们已经在静态类中使用了system.load–2次,其中第一次使用的是when the first one is giving–std error–bad allocation as there are 2 path in opencv–this is the first one system.load(“c:\users\downloads\opencv\build\bin\opencv_java342.dll”);
第二个是给出Assert错误,根据Assert错误,这是第二个system.load(“c:\user\downloads\opencv\build\java\x64\opencv_java3412.dll”);
代码一直执行到中途,然后退出,到目前为止,代码还没有到达tesseract。

Here is the code for the same :

    import java.awt.Image;
    import java.awt.image.BufferedImage;
    import java.awt.image.DataBufferByte;
    import java.io.BufferedWriter;
    import java.io.File;
    import java.io.FileInputStream;
    import java.io.FileWriter;
    import java.io.PrintWriter;
    import java.util.ArrayList;
    import java.util.Iterator;
    import java.util.List;
    import java.util.concurrent.TimeUnit;

    import javax.swing.ImageIcon;
    import javax.swing.JFrame;
    import javax.swing.JLabel;

    import org.apache.commons.logging.impl.Log4JLogger;
    import org.apache.log4j.Logger;
    import org.apache.poi.ss.usermodel.Cell;
    import org.apache.poi.ss.usermodel.Row;
    import org.apache.poi.xssf.usermodel.XSSFSheet;
    import org.apache.poi.xssf.usermodel.XSSFWorkbook;
    import org.opencv.core.Core;
    import org.opencv.core.CvException;
    import org.opencv.core.Mat;
    import org.opencv.core.MatOfPoint;
    import org.opencv.core.Rect;
    import org.opencv.core.Size;
    import org.opencv.highgui.HighGui;
    import org.opencv.imgcodecs.Imgcodecs;
    import org.opencv.imgproc.Imgproc;

    import net.sourceforge.tess4j.Tesseract;
    import nu.pattern.OpenCV;

    public class ReadImageBox {

        public String readDataFromImage(String imageToReadPath,String tesseractPath) 
        {

            String result = "";
            try {
                String i = Core.NATIVE_LIBRARY_NAME;
                System.loadLibrary(Core.NATIVE_LIBRARY_NAME);

                logger.info("Img to read "+imageToReadPath);
                String imagePath =imageToReadPath; // bufferNameOfImagePath = "";
                logger.info(imagePath);

                        /*
                         * The class Mat represents an n-dimensional dense numerical single-channel or
                         * multi-channel array. It can be used to store real or complex-valued vectors
                         * and matrices, grayscale or color images, voxel volumes, vector fields, point
                         * clouds, tensors, histograms (though, very high-dimensional histograms may be
                         * better stored in a SparseMat ).
                         */
                        logger.info("imagepath::"+imagePath);

                         OpenCV.loadLocally();

                        logger.info("imagepath::"+imagePath);
                        //logger.info("Library Information"+Core.getBuildInformation());

                        logger.info("imagepath::"+imagePath);
                        Mat source = Imgcodecs.imread(imagePath);

                        logger.info("Source image "+source);
                        String directoryPath = imagePath.substring(0,imagePath.lastIndexOf('/'));

                        logger.info("Going for Image Processing :" + directoryPath);

                        // calling image processing here to process the data from it
                        result = updateImage(100,20,10,3,3,2,source, directoryPath,tesseractPath);  

                        logger.info("Data read "+result);
        return result;
            }
            catch (UnsatisfiedLinkError error) {
                // Output expected UnsatisfiedLinkErrors.
                logger.error(error);
            } 
            catch (Exception exception)
            {
                logger.error(exception);
            }
            return result;
        }

        public static String updateImage(int boxSize, int horizontalRemoval, int verticalRemoval, int gaussianBlur,
                int denoisingClosing, int denoisingOpening, Mat source, String tempDirectoryPath,String tesseractPath) throws Exception{

            // Tesseract Object
            logger.info("Tesseract Path :"+tesseractPath);
            Tesseract tesseract = new Tesseract();
            tesseract.setDatapath(tesseractPath);

            // Creating the empty destination matrix for further processing
            Mat grayScaleImage = new Mat();``
            Mat gaussianBlurImage = new Mat();
            Mat thresholdImage = new Mat();
            Mat morph = new Mat();
            Mat morphAfterOpreation = new Mat();
            Mat dilate = new Mat();
            Mat hierarchy = new Mat();

            logger.info("Image type"+source.type());

            // Converting the image to gray scale and saving it in the grayScaleImage matrix
            Imgproc.cvtColor(source, grayScaleImage, Imgproc.COLOR_RGB2GRAY);
            //Imgproc.cvtColor(source, grayScaleImage, 0);

            // Applying Gaussain Blur
            logger.info("source image "+source);

            Imgproc.GaussianBlur(grayScaleImage, gaussianBlurImage, new org.opencv.core.Size(gaussianBlur, gaussianBlur),
                    0);

            // OTSU threshold
            Imgproc.threshold(gaussianBlurImage, thresholdImage, 0, 255, Imgproc.THRESH_OTSU | Imgproc.THRESH_BINARY_INV);

            logger.info("Threshold image "+gaussianBlur);

            // remove the lines of any table inside the invoice
            Mat horizontal = thresholdImage.clone();
            Mat vertical = thresholdImage.clone();

            int horizontal_size = horizontal.cols() / 30;
            if(horizontal_size%2==0)
                horizontal_size+=1;

            // showWaitDestroy("Horizontal Lines Detected", horizontal);

            Mat horizontalStructure = Imgproc.getStructuringElement(Imgproc.MORPH_RECT,
                    new org.opencv.core.Size(horizontal_size, 1));
            Imgproc.erode(horizontal, horizontal, horizontalStructure);
            Imgproc.dilate(horizontal, horizontal, horizontalStructure);

            int vertical_size = vertical.rows() / 30;
            if(vertical_size%2==0)
                vertical_size+=1;

            // Create structure element for extracting vertical lines through morphology
            // operations
            Mat verticalStructure = Imgproc.getStructuringElement(Imgproc.MORPH_RECT,
                    new org.opencv.core.Size(1, vertical_size));

            // Apply morphology operations
            Imgproc.erode(vertical, vertical, verticalStructure);
            Imgproc.dilate(vertical, vertical, verticalStructure);

            Core.absdiff(thresholdImage, horizontal, thresholdImage);
            Core.absdiff(thresholdImage, vertical, thresholdImage);

            logger.info("Vertical Structure "+verticalStructure);

            Mat newImageFortest = thresholdImage;

            logger.info("Threshold image "+thresholdImage);
            // applying Closing operation
            Imgproc.morphologyEx(thresholdImage, morph, Imgproc.MORPH_CLOSE, Imgproc.getStructuringElement(
                    Imgproc.MORPH_RECT, new Size(denoisingClosing, denoisingClosing)));

            logger.info("Morph image "+morph);

            // applying Opening operation
            Imgproc.morphologyEx(morph, morphAfterOpreation, Imgproc.MORPH_OPEN, Imgproc.getStructuringElement(
                    Imgproc.MORPH_RECT, new Size(denoisingOpening, denoisingOpening)));

            logger.info("Morph After operation image "+morphAfterOpreation);
            // Applying dilation on the threshold image to create bounding box edges
            Imgproc.dilate(morphAfterOpreation, dilate,
                    Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(boxSize, boxSize)));

            logger.info("Dilate image "+dilate);

            // creating string buffer object
            String text = "";

            try
            {

            // finding contours
            List<MatOfPoint> contourList = new ArrayList<MatOfPoint>(); // A list to store all the contours

            // finding contours
            Imgproc.findContours(dilate, contourList, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_NONE);

            logger.info("Contour List "+contourList);

            // Creating a copy of the image
            //Mat copyOfImage = source;
            Mat copyOfImage = newImageFortest;

            logger.info("Copy of Image "+copyOfImage);

            // Rectangle for cropping
            Rect rectCrop = new Rect();

            logger.info("Rectangle Crop New Object "+rectCrop);

            // loop through the identified contours and crop them from the image to feed
            // into Tesseract-OCR

            for (int i = 0; i < contourList.size(); i++) {
                // getting bound rectangle
                rectCrop = Imgproc.boundingRect(contourList.get(i));

                logger.info("Rectangle cropped"+rectCrop);

                // cropping Image
                Mat croppedImage = copyOfImage.submat(rectCrop.y, rectCrop.y + rectCrop.height, rectCrop.x,
                        rectCrop.x + rectCrop.width);

                // writing cropped image to disk

                logger.info("Path to write cropped image "+ tempDirectoryPath);

                String writePath = tempDirectoryPath + "/croppedImg.png";
                logger.info("writepath"+writePath);
                // imagepath = imagepath.
                Imgcodecs.imwrite(writePath, croppedImage);

                try {
                    // extracting text from cropped image, goes to the image, extracts text and adds
                    // them to stringBuffer

                    logger.info("Exact Path where Image was written with Name "+ writePath);
                    String textExtracted = (tesseract
                            .doOCR(new File(writePath)));

                    //Adding Seperator
                    textExtracted = textExtracted + "_SEPERATOR_";

                    logger.info("Text Extracted "+textExtracted);

                    textExtracted = textExtracted + "\n";
                    text = textExtracted + text;

                    logger.info("Text Extracted Completely"+text);
                    // System.out.println("Andar Ka Text => " + text.toString());
                } catch (Exception exception) {
                    logger.error(exception);
                }

                writePath = "";
                logger.info("Making write Path empty for next Image "+ writePath);
            }

            }
            catch(CvException ae)
            {
                logger.error("cv",ae);
            }
            catch(UnsatisfiedLinkError ae)
            {
                logger.error("unsatdif",ae);
            }
            catch(Exception ae)
            {
                logger.error("general",ae);
            }
            // converting into string
            return text.toUpperCase();      

        }

        // convert Mat to Image for GUI output
        public static Image toBufferedImage(Mat m) {
            // getting BYTE_GRAY formed image
            int type = BufferedImage.TYPE_BYTE_GRAY;
            if (m.channels() > 1) {
                type = BufferedImage.TYPE_3BYTE_BGR;
            }

            int bufferSize = m.channels() * m.cols() * m.rows();
            byte[] b = new byte[bufferSize];

            m.get(0, 0, b); // get all the pixels

            // creating buffered Image
            BufferedImage image = new BufferedImage(m.cols(), m.rows(), type);
            final byte[] targetPixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData();
            System.arraycopy(b, 0, targetPixels, 0, b.length);

            // returning Image
            return image;
        }

        // method to display Mat format images using the GUI
        private static void showWaitDestroy(String winname, Mat img) {
            HighGui.imshow(winname, img);
            HighGui.moveWindow(winname, 500, 0);
            HighGui.waitKey(0);
            HighGui.destroyWindow(winname);
        }
    }

暂无答案!

目前还没有任何答案,快来回答吧!

相关问题