使用管道从s3加载pyspark.ml模型

elcex8rz  于 2021-07-13  发布在  Spark
关注(0)|答案(1)|浏览(512)

我正在尝试将一个经过训练的模型保存到s3存储中,然后尝试通过pyspark.ml中的pipeline包加载和预测这个模型。下面是我如何保存模型的示例。


# stage_1 to stage_4 are some basic trasnformation on data one-hot encoding e.t.c

# define stage 5: logistic regression model

 stage_5 = LogisticRegression(featuresCol='features',labelCol='label')

 # SETUP THE PIPELINE
 regression_pipeline = Pipeline(stages= [stage_1, stage_2, stage_3, stage_4, stage_5])

 # fit the pipeline for the trainind data
 model = regression_pipeline.fit(dataFrame1)

 model_path ="s3://s3-dummy_path-orch/dummy models/pipeline_testing_1.model"
 model.save(model_path)

我能够成功地保存模型&在上面提到的模型路径上创建了两个文件夹
阶段
元数据。
然而,当我试图加载模型,它给了我以下的错误。

Traceback (most recent call last):
  File "/tmp/pythonScript_85ff2462_e087_4805_9f50_0c75fc4302e2958379757178872310.py", line 75, in <module>
    pipelineModel = Pipeline.load(model_path)
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/ml/util.py", line 362, in load
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/ml/pipeline.py", line 207, in load
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/ml/util.py", line 300, in load
  File "/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/sql/utils.py", line 79, in deco
pyspark.sql.utils.IllegalArgumentException: 'requirement failed: Error loading metadata: Expected class name org.apache.spark.ml.Pipeline but found class name org.apache.spark.ml.PipelineModel'

我正在尝试加载模型,如下所示:

from pyspark.ml import Pipeline

## same path used while #model.save in the above code snippet

model_path ="s3://s3-dummy_path-orch/dummy models/pipeline_testing_1.model" 

pipelineModel = Pipeline.load(model_path)

我怎样才能纠正这个问题呢?

ufj5ltwl

ufj5ltwl1#

如果保存了管道模型,则应将其作为管道模型加载,而不是作为管道加载。不同之处在于,管道模型适合于Dataframe,而管道模型不适合。

from pyspark.ml import PipelineModel

pipelineModel = PipelineModel.load(model_path)

相关问题