我在Pandas数据框中有一个带标签的数据集。
>>> df.dtypes
title object
headline object
byline object
dateline object
text object
copyright category
country category
industry category
topic category
file object
dtype: object
我正在建立一个模型来预测 topic
基于 text
. 而 text
是一根大绳子, topic
是字符串列表。例如:
>>> df['topic'].head(5)
0 ['ECONOMIC PERFORMANCE', 'ECONOMICS', 'EQUITY ...
1 ['CAPACITY/FACILITIES', 'CORPORATE/INDUSTRIAL']
2 ['PERFORMANCE', 'ACCOUNTS/EARNINGS', 'CORPORAT...
3 ['PERFORMANCE', 'ACCOUNTS/EARNINGS', 'CORPORAT...
4 ['STRATEGY/PLANS', 'NEW PRODUCTS/SERVICES', 'C...
在我把它放到一个模型中之前,我必须对整个Dataframe进行标记化,但是当通过transformer的 Autotokenizer
我得到一个错误。
import pandas as pd
import numpy as np
import tensorflow as tf
from transformers import AutoTokenizer
import tensorflow_hub as hub
import tensorflow_text as text
from sklearn.model_selection import train_test_split
def preprocess_text(df):
# Remove punctuations and numbers
df['text'] = df['text'].str.replace('[^a-zA-Z]', ' ', regex=True)
# Single character removal
df['text'] = df['text'].str.replace(r"\s+[a-zA-Z]\s+", ' ', regex=True)
# Removing multiple spaces
df['text'] = df['text'].str.replace(r'\s+', ' ', regex=True)
# Remove NaNs
df['text'] = df['text'].fillna('')
df['topic'] = df['topic'].cat.add_categories('').fillna('')
return df
# Load tokenizer and logger
tf.get_logger().setLevel('ERROR')
tokenizer = AutoTokenizer.from_pretrained('roberta-large')
# Load dataframe with just text and topic columns
# Only loading first 100 rows for testing purposes
df = pd.DataFrame()
for chunk in pd.read_csv(r'C:\Users\pfortier\Documents\Reuters\test.csv', sep='|', chunksize=100,
dtype={'topic': 'category', 'country': 'category', 'industry': 'category', 'copyright': 'category'}):
df = chunk
break
df = preprocess_text(df)
# Split dataset into train, test, val (70, 15, 15)
train, test = train_test_split(df, test_size=0.15)
train, val = train_test_split(train, test_size=0.15)
# Tokenize datasets
train = tokenizer(train, return_tensors='tf', truncation=True, padding=True, max_length=128)
val = tokenizer(val, return_tensors='tf', truncation=True, padding=True, max_length=128)
test = tokenizer(test, return_tensors='tf', truncation=True, padding=True, max_length=128)
我得到这个错误:
AssertionError: text input must of type `str` (single example), `List[str]` (batch or single pretokenized example) or `List[List[str]]` (batch of pretokenized examples).
在线上 train = tokenizer(train, return_tensors='tf', truncation=True, padding=True, max_length=128)
.
这是否意味着我必须把我的df变成一个列表?
暂无答案!
目前还没有任何答案,快来回答吧!